import os from datasets import Dataset, DatasetDict, Image, Features, Value import glob # Define the path to your dataset (where the folders like 0_frames, 1_frames, etc., are located) dataset_path = "/Users/lorenzo/Documents/GitHub/sprite-animation/train" # Replace with the actual path # Define the features for the dataset features = Features({ "image": Image(), "label": Value("string"), # The folder name (e.g., "12_frames") "sprite_id": Value("string"), # The sprite ID (e.g., "12") }) # Initialize lists to hold the consolidated data images = [] labels = [] sprite_ids = [] # Iterate over each folder (0_frames, 1_frames, etc.) for folder_name in os.listdir(dataset_path): folder_path = os.path.join(dataset_path, folder_name) # Skip non-directory files and hidden directories (e.g., .git) if not os.path.isdir(folder_path) or folder_name.startswith("."): continue print(f"Processing folder: {folder_name}") # Debug: Print folder being processed # Extract the sprite ID from the folder name (e.g., "12" from "12_frames") sprite_id = folder_name.split("_")[0] # Load all images in the folder image_paths = glob.glob(os.path.join(folder_path, "sprite_*.png")) print(f"Found {len(image_paths)} images in folder '{folder_name}'") # Debug: Print number of images found for image_path in image_paths: # Append data to the consolidated lists images.append(image_path) labels.append(folder_name) # Use the folder name as the label sprite_ids.append(sprite_id) # Use the sprite ID as an additional field # Create a single dataset with all the data dataset = Dataset.from_dict( { "image": images, "label": labels, "sprite_id": sprite_ids, }, features=features ) # Create a DatasetDict with a single split (e.g., "train") final_dataset = DatasetDict({"train": dataset}) # Push the dataset to Hugging Face final_dataset.push_to_hub("Lod34/sprite-animation", private=False) # Set private=True if you want it private print("Dataset successfully uploaded!")