LuftmenschPose commited on
Commit
9a3f6e8
·
verified ·
1 Parent(s): 78e37fc

Upload 5 files

Browse files
BART_news_sapo_summarization.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re, os, sys
4
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
5
+ import argparse
6
+ import json
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from datasets import Dataset
10
+ import torch
11
+ from torch.utils.data import DataLoader
12
+ from torch.optim import AdamW
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ from tqdm import tqdm
15
+ from transformers import get_scheduler
16
+ from evaluate import load
17
+
18
+ parser = argparse.ArgumentParser()
19
+
20
+ parser.add_argument("--learning_rate",
21
+ default=5e-5,
22
+ type=float)
23
+
24
+ parser.add_argument("--batch_size",
25
+ default=32,
26
+ type=int)
27
+
28
+ parser.add_argument("--max_length_body",
29
+ default=512,
30
+ type=int)
31
+
32
+ parser.add_argument("--max_length_summ",
33
+ default=64,
34
+ type=int)
35
+
36
+ parser.add_argument("--num_epochs",
37
+ default=512,
38
+ type=int)
39
+
40
+ parser.add_argument("--do_train",
41
+ action='store_true',
42
+ help="Whether to run training.")
43
+
44
+ parser.add_argument("--do_eval",
45
+ action='store_true',
46
+ help="Whether to run eval on the test set.")
47
+
48
+ parser.add_argument("--debug",
49
+ action='store_true',
50
+ help="debug")
51
+
52
+
53
+ args = parser.parse_args()
54
+
55
+ print("--- Chuẩn bị dataset... ---")
56
+ df = pd.read_parquet('news_sapo_processed.parquet')
57
+ if args.debug:
58
+ df = df[0:1000].reset_index(drop=True)
59
+
60
+ train_df, temp_df = train_test_split(df, test_size=0.0042, random_state=42)
61
+ val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)
62
+
63
+ train_dataset = Dataset.from_pandas(train_df[["clean_body", "clean_summary"]].rename(
64
+ columns={"clean_body": "text", "clean_summary": "summary"}))
65
+ val_dataset = Dataset.from_pandas(val_df[["clean_body", "clean_summary"]].rename(
66
+ columns={"clean_body": "text", "clean_summary": "summary"}))
67
+ test_dataset = Dataset.from_pandas(test_df[["clean_body", "clean_summary"]].rename(
68
+ columns={"clean_body": "text", "clean_summary": "summary"}))
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("VietAI/vibart2-cased")
71
+
72
+ def preprocess_function(examples):
73
+ inputs = tokenizer(
74
+ examples["text"],
75
+ max_length=args.max_length_body,
76
+ padding="max_length",
77
+ truncation=True
78
+ )
79
+
80
+ targets = tokenizer(
81
+ examples["summary"],
82
+ max_length=args.max_length_summ,
83
+ padding="max_length",
84
+ truncation=True
85
+ )
86
+
87
+ inputs["labels"] = targets["input_ids"]
88
+ return inputs
89
+
90
+
91
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
92
+ tokenized_val = val_dataset.map(preprocess_function, batched=True)
93
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
94
+
95
+ tokenized_train.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
96
+ tokenized_val.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
97
+ tokenized_test.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
98
+
99
+ train_dataloader = DataLoader(tokenized_train, batch_size=args.batch_size, shuffle=True)
100
+ val_dataloader = DataLoader(tokenized_val, batch_size=args.batch_size)
101
+ test_dataloader = DataLoader(tokenized_test, batch_size=args.batch_size)
102
+
103
+ for batch in train_dataloader:
104
+ print({k: v.shape for k, v in batch.items()})
105
+ break
106
+
107
+ rouge = load("rouge")
108
+
109
+ def evaluate_cus(model, dataloader, tokenizer):
110
+ model.eval()
111
+ preds = []
112
+ labels = []
113
+
114
+ with torch.no_grad():
115
+ for batch in tqdm(dataloader, desc="Evaluating"):
116
+ input_ids = batch['input_ids'].to(device)
117
+ attention_mask = batch['attention_mask'].to(device)
118
+
119
+ generated_tokens = model.generate(
120
+ input_ids=input_ids,
121
+ attention_mask=attention_mask,
122
+ max_length=args.max_length_summ
123
+ )
124
+
125
+ decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
126
+ decoded_labels = tokenizer.batch_decode(batch['labels'].to(device), skip_special_tokens=True)
127
+
128
+ preds.extend(decoded_preds)
129
+ labels.extend(decoded_labels)
130
+
131
+ result = rouge.compute(predictions=preds, references=labels, use_stemmer=True)
132
+ rouge1 = result["rouge1"]
133
+ rouge2 = result["rouge2"]
134
+ rougeL = result["rougeL"]
135
+
136
+ print(f"ROUGE-1: {rouge1:.4f}")
137
+ print(f"ROUGE-2: {rouge2:.4f}")
138
+ print(f"ROUGE-L: {rougeL:.4f}")
139
+
140
+ return rougeL
141
+ if args.do_train:
142
+ print("--- Training ---")
143
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
144
+
145
+ model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vibart2-cased").to(device)
146
+ optimizer = AdamW(model.parameters(), lr=args.learing_rate)
147
+
148
+ best_rougeL = 0
149
+ num_training_steps = len(train_dataloader) * args.num_epochs
150
+ lr_scheduler = get_scheduler(
151
+ "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
152
+ )
153
+ results_history = []
154
+ for epoch in range(args.num_epochs):
155
+ model.train()
156
+ total_loss = 0
157
+ progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}")
158
+
159
+ for batch in progress_bar:
160
+ batch = {k: v.to(device) for k, v in batch.items()}
161
+ outputs = model(**batch)
162
+ loss = outputs.loss
163
+ loss.backward()
164
+
165
+ optimizer.step()
166
+ lr_scheduler.step()
167
+ optimizer.zero_grad()
168
+
169
+ total_loss += loss.item()
170
+ progress_bar.set_postfix(loss=loss.item())
171
+
172
+ avg_loss = total_loss / len(train_dataloader)
173
+ print(f">>> Avg loss for epoch {epoch+1}: {avg_loss:.4f}")
174
+
175
+ rougeL = evaluate_cus(model, val_dataloader, tokenizer)
176
+ results_history.append({
177
+ "epoch": epoch + 1,
178
+ "loss": avg_loss,
179
+ "rougeL": rougeL
180
+ })
181
+ if rougeL > best_rougeL:
182
+ best_rougeL = rougeL
183
+ print(f">>> New best ROUGE-L: {best_rougeL:.4f}. Saving model...")
184
+ model.save_pretrained("best_model")
185
+ tokenizer.save_pretrained("best_model")
186
+ with open("training_log.json", "w", encoding="utf-8") as f:
187
+ json.dump(results_history, f, indent=4, ensure_ascii=False)
188
+ if args.do_eval:
189
+ print("--- Evaluation on test set ---")
190
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
191
+ model = AutoModelForSeq2SeqLM.from_pretrained("best_model").to(device)
192
+ tokenizer = AutoTokenizer.from_pretrained("best_model")
193
+ evaluate_cus(model, val_dataloader, tokenizer)
BartPho_new_sapo_summaiation.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re, os, sys
4
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
5
+ import argparse
6
+ import json
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from datasets import Dataset
10
+ import torch
11
+ from torch.utils.data import DataLoader
12
+ from torch.optim import AdamW
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ from tqdm import tqdm
15
+ from transformers import get_scheduler
16
+ from evaluate import load
17
+
18
+ parser = argparse.ArgumentParser()
19
+
20
+ parser.add_argument("--learning_rate",
21
+ default=5e-5,
22
+ type=float)
23
+
24
+ parser.add_argument("--batch_size",
25
+ default=32,
26
+ type=int)
27
+
28
+ parser.add_argument("--max_length_body",
29
+ default=512,
30
+ type=int)
31
+
32
+ parser.add_argument("--max_length_summ",
33
+ default=64,
34
+ type=int)
35
+
36
+ parser.add_argument("--num_epochs",
37
+ default=512,
38
+ type=int)
39
+
40
+ parser.add_argument("--do_train",
41
+ action='store_true',
42
+ help="Whether to run training.")
43
+
44
+ parser.add_argument("--do_eval",
45
+ action='store_true',
46
+ help="Whether to run eval on the test set.")
47
+
48
+ parser.add_argument("--debug",
49
+ action='store_true',
50
+ help="debug")
51
+
52
+
53
+ args = parser.parse_args()
54
+
55
+ print("--- Chuẩn bị dataset... ---")
56
+ df = pd.read_parquet('news_sapo_processed.parquet')
57
+ if args.debug:
58
+ df = df[0:1000].reset_index(drop=True)
59
+
60
+ train_df, temp_df = train_test_split(df, test_size=0.0042, random_state=42)
61
+ val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)
62
+
63
+ train_dataset = Dataset.from_pandas(train_df[["clean_body", "clean_summary"]].rename(
64
+ columns={"clean_body": "text", "clean_summary": "summary"}))
65
+ val_dataset = Dataset.from_pandas(val_df[["clean_body", "clean_summary"]].rename(
66
+ columns={"clean_body": "text", "clean_summary": "summary"}))
67
+ test_dataset = Dataset.from_pandas(test_df[["clean_body", "clean_summary"]].rename(
68
+ columns={"clean_body": "text", "clean_summary": "summary"}))
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("vinai/phobart-base")
71
+
72
+ def preprocess_function(examples):
73
+ model_inputs = tokenizer(
74
+ examples["text"],
75
+ max_length=args.max_length_body,
76
+ padding="max_length",
77
+ truncation=True
78
+ )
79
+
80
+ # with tokenizer.as_target_tokenizer():
81
+ labels = tokenizer(
82
+ examples["summary"],
83
+ max_length=args.max_length_summ,
84
+ padding="max_length",
85
+ truncation=True
86
+ )
87
+
88
+ model_inputs["labels"] = labels["input_ids"]
89
+ return model_inputs
90
+
91
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
92
+ tokenized_val = val_dataset.map(preprocess_function, batched=True)
93
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
94
+
95
+ tokenized_train.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
96
+ tokenized_val.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
97
+ tokenized_test.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
98
+
99
+ train_dataloader = DataLoader(tokenized_train, batch_size=args.batch_size, shuffle=True)
100
+ val_dataloader = DataLoader(tokenized_val, batch_size=args.batch_size)
101
+ test_dataloader = DataLoader(tokenized_test, batch_size=args.batch_size)
102
+
103
+ for batch in train_dataloader:
104
+ print({k: v.shape for k, v in batch.items()})
105
+ break
106
+
107
+ rouge = load("rouge")
108
+
109
+ def evaluate_cus(model, dataloader, tokenizer):
110
+ model.eval()
111
+ preds = []
112
+ labels = []
113
+
114
+ with torch.no_grad():
115
+ for batch in tqdm(dataloader, desc="Evaluating"):
116
+ input_ids = batch['input_ids'].to(device)
117
+ attention_mask = batch['attention_mask'].to(device)
118
+
119
+ generated_tokens = model.generate(
120
+ input_ids=input_ids,
121
+ attention_mask=attention_mask,
122
+ max_length=args.max_length_summ
123
+ )
124
+
125
+ decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
126
+ decoded_labels = tokenizer.batch_decode(batch['labels'].to(device), skip_special_tokens=True)
127
+
128
+ preds.extend(decoded_preds)
129
+ labels.extend(decoded_labels)
130
+
131
+ result = rouge.compute(predictions=preds, references=labels, use_stemmer=True)
132
+ rouge1 = result["rouge1"]
133
+ rouge2 = result["rouge2"]
134
+ rougeL = result["rougeL"]
135
+
136
+ print(f"ROUGE-1: {rouge1:.4f}")
137
+ print(f"ROUGE-2: {rouge2:.4f}")
138
+ print(f"ROUGE-L: {rougeL:.4f}")
139
+
140
+ return rougeL
141
+ if args.do_train:
142
+ print("--- Training ---")
143
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
144
+
145
+ model = AutoModelForSeq2SeqLM.from_pretrained("vinai/phobart-base").to(device)
146
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
147
+
148
+ best_rougeL = 0
149
+ num_training_steps = len(train_dataloader) * args.num_epochs
150
+ lr_scheduler = get_scheduler(
151
+ "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
152
+ )
153
+ results_history = []
154
+ for epoch in range(args.num_epochs):
155
+ model.train()
156
+ total_loss = 0
157
+ progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}")
158
+
159
+ for batch in progress_bar:
160
+ batch = {k: v.to(device) for k, v in batch.items()}
161
+ outputs = model(**batch)
162
+ loss = outputs.loss
163
+ loss.backward()
164
+
165
+ optimizer.step()
166
+ lr_scheduler.step()
167
+ optimizer.zero_grad()
168
+
169
+ total_loss += loss.item()
170
+ progress_bar.set_postfix(loss=loss.item())
171
+
172
+ avg_loss = total_loss / len(train_dataloader)
173
+ print(f">>> Avg loss for epoch {epoch+1}: {avg_loss:.4f}")
174
+
175
+ rougeL = evaluate_cus(model, val_dataloader, tokenizer)
176
+ results_history.append({
177
+ "epoch": epoch + 1,
178
+ "loss": avg_loss,
179
+ "rougeL": rougeL
180
+ })
181
+ if rougeL > best_rougeL:
182
+ best_rougeL = rougeL
183
+ print(f">>> New best ROUGE-L: {best_rougeL:.4f}. Saving model...")
184
+ model.save_pretrained("best_model")
185
+ tokenizer.save_pretrained("best_model")
186
+ with open("training_log.json", "w", encoding="utf-8") as f:
187
+ json.dump(results_history, f, indent=4, ensure_ascii=False)
188
+ if args.do_eval:
189
+ print("--- Evaluation on test set ---")
190
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
191
+ model = AutoModelForSeq2SeqLM.from_pretrained("best_model").to(device)
192
+ tokenizer = AutoTokenizer.from_pretrained("best_model")
193
+ evaluate_cus(model, val_dataloader, tokenizer)
PhoBart_new_sapo_summaiation.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re, os, sys
4
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
5
+ import argparse
6
+ import json
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from datasets import Dataset
10
+ import torch
11
+ from torch.utils.data import DataLoader
12
+ from torch.optim import AdamW
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ from tqdm import tqdm
15
+ from transformers import get_scheduler
16
+ from evaluate import load
17
+
18
+ parser = argparse.ArgumentParser()
19
+
20
+ parser.add_argument("--learning_rate",
21
+ default=5e-5,
22
+ type=float)
23
+
24
+ parser.add_argument("--batch_size",
25
+ default=32,
26
+ type=int)
27
+
28
+ parser.add_argument("--max_length_body",
29
+ default=512,
30
+ type=int)
31
+
32
+ parser.add_argument("--max_length_summ",
33
+ default=64,
34
+ type=int)
35
+
36
+ parser.add_argument("--num_epochs",
37
+ default=512,
38
+ type=int)
39
+
40
+ parser.add_argument("--do_train",
41
+ action='store_true',
42
+ help="Whether to run training.")
43
+
44
+ parser.add_argument("--do_eval",
45
+ action='store_true',
46
+ help="Whether to run eval on the test set.")
47
+
48
+ parser.add_argument("--debug",
49
+ action='store_true',
50
+ help="debug")
51
+
52
+
53
+ args = parser.parse_args()
54
+
55
+ print("--- Chuẩn bị dataset... ---")
56
+ df = pd.read_parquet('news_sapo_processed.parquet')
57
+ if args.debug:
58
+ df = df[0:1000].reset_index(drop=True)
59
+
60
+ train_df, temp_df = train_test_split(df, test_size=0.0042, random_state=42)
61
+ val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)
62
+
63
+ train_dataset = Dataset.from_pandas(train_df[["clean_body", "clean_summary"]].rename(
64
+ columns={"clean_body": "text", "clean_summary": "summary"}))
65
+ val_dataset = Dataset.from_pandas(val_df[["clean_body", "clean_summary"]].rename(
66
+ columns={"clean_body": "text", "clean_summary": "summary"}))
67
+ test_dataset = Dataset.from_pandas(test_df[["clean_body", "clean_summary"]].rename(
68
+ columns={"clean_body": "text", "clean_summary": "summary"}))
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("vinai/phobart-base")
71
+
72
+ def preprocess_function(examples):
73
+ inputs = tokenizer(
74
+ examples["text"],
75
+ max_length=args.max_length_body,
76
+ padding="max_length",
77
+ truncation=True
78
+ )
79
+
80
+ targets = tokenizer(
81
+ examples["summary"],
82
+ max_length=args.max_length_summ,
83
+ padding="max_length",
84
+ truncation=True
85
+ )
86
+
87
+ inputs["labels"] = [
88
+ [(label if label != tokenizer.pad_token_id else -100) for label in labels]
89
+ for labels in targets["input_ids"]
90
+ ]
91
+
92
+ return inputs
93
+
94
+
95
+
96
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
97
+ tokenized_val = val_dataset.map(preprocess_function, batched=True)
98
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
99
+
100
+ tokenized_train.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
101
+ tokenized_val.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
102
+ tokenized_test.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
103
+
104
+ train_dataloader = DataLoader(tokenized_train, batch_size=args.batch_size, shuffle=True)
105
+ val_dataloader = DataLoader(tokenized_val, batch_size=args.batch_size)
106
+ test_dataloader = DataLoader(tokenized_test, batch_size=args.batch_size)
107
+
108
+ for batch in train_dataloader:
109
+ print({k: v.shape for k, v in batch.items()})
110
+ break
111
+
112
+ rouge = load("rouge")
113
+
114
+ def evaluate_cus(model, dataloader, tokenizer):
115
+ model.eval()
116
+ preds = []
117
+ labels = []
118
+
119
+ with torch.no_grad():
120
+ for batch in tqdm(dataloader, desc="Evaluating"):
121
+ input_ids = batch['input_ids'].to(device)
122
+ attention_mask = batch['attention_mask'].to(device)
123
+
124
+ generated_tokens = model.generate(
125
+ input_ids=input_ids,
126
+ attention_mask=attention_mask,
127
+ max_length=args.max_length_summ
128
+ )
129
+
130
+ decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
131
+ decoded_labels = tokenizer.batch_decode(batch['labels'].to(device), skip_special_tokens=True)
132
+
133
+ preds.extend(decoded_preds)
134
+ labels.extend(decoded_labels)
135
+
136
+ result = rouge.compute(predictions=preds, references=labels, use_stemmer=True)
137
+ rouge1 = result["rouge1"]
138
+ rouge2 = result["rouge2"]
139
+ rougeL = result["rougeL"]
140
+
141
+ print(f"ROUGE-1: {rouge1:.4f}")
142
+ print(f"ROUGE-2: {rouge2:.4f}")
143
+ print(f"ROUGE-L: {rougeL:.4f}")
144
+
145
+ return rougeL
146
+ if args.do_train:
147
+ print("--- Training ---")
148
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
149
+
150
+ model = AutoModelForSeq2SeqLM.from_pretrained("vinai/phobart-base").to(device)
151
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
152
+
153
+ best_rougeL = 0
154
+ num_training_steps = len(train_dataloader) * args.num_epochs
155
+ lr_scheduler = get_scheduler(
156
+ "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
157
+ )
158
+ results_history = []
159
+ for epoch in range(args.num_epochs):
160
+ model.train()
161
+ total_loss = 0
162
+ progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}")
163
+
164
+ for batch in progress_bar:
165
+ batch = {k: v.to(device) for k, v in batch.items()}
166
+ outputs = model(**batch)
167
+ loss = outputs.loss
168
+ loss.backward()
169
+
170
+ optimizer.step()
171
+ lr_scheduler.step()
172
+ optimizer.zero_grad()
173
+
174
+ total_loss += loss.item()
175
+ progress_bar.set_postfix(loss=loss.item())
176
+
177
+ avg_loss = total_loss / len(train_dataloader)
178
+ print(f">>> Avg loss for epoch {epoch+1}: {avg_loss:.4f}")
179
+
180
+ rougeL = evaluate_cus(model, val_dataloader, tokenizer)
181
+ results_history.append({
182
+ "epoch": epoch + 1,
183
+ "loss": avg_loss,
184
+ "rougeL": rougeL
185
+ })
186
+ if rougeL > best_rougeL:
187
+ best_rougeL = rougeL
188
+ print(f">>> New best ROUGE-L: {best_rougeL:.4f}. Saving model...")
189
+ model.save_pretrained("best_model")
190
+ tokenizer.save_pretrained("best_model")
191
+ with open("training_log.json", "w", encoding="utf-8") as f:
192
+ json.dump(results_history, f, indent=4, ensure_ascii=False)
193
+ if args.do_eval:
194
+ print("--- Evaluation on test set ---")
195
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
196
+ model = AutoModelForSeq2SeqLM.from_pretrained("best_model").to(device)
197
+ tokenizer = AutoTokenizer.from_pretrained("best_model")
198
+ evaluate_cus(model, val_dataloader, tokenizer)
ViT5_news_sapo_summarization.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re, os, sys
4
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
5
+ import argparse
6
+ import json
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from datasets import Dataset
10
+ import torch
11
+ from torch.utils.data import DataLoader
12
+ from torch.optim import AdamW
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ from tqdm import tqdm
15
+ from transformers import get_scheduler
16
+ from evaluate import load
17
+
18
+ parser = argparse.ArgumentParser()
19
+
20
+ parser.add_argument("--learning_rate",
21
+ default=5e-5,
22
+ type=float)
23
+
24
+ parser.add_argument("--batch_size",
25
+ default=32,
26
+ type=int)
27
+
28
+ parser.add_argument("--max_length_body",
29
+ default=512,
30
+ type=int)
31
+
32
+ parser.add_argument("--max_length_summ",
33
+ default=64,
34
+ type=int)
35
+
36
+ parser.add_argument("--num_epochs",
37
+ default=512,
38
+ type=int)
39
+
40
+ parser.add_argument("--do_train",
41
+ action='store_true',
42
+ help="Whether to run training.")
43
+
44
+ parser.add_argument("--do_eval",
45
+ action='store_true',
46
+ help="Whether to run eval on the test set.")
47
+
48
+ parser.add_argument("--debug",
49
+ action='store_true',
50
+ help="debug")
51
+
52
+
53
+ args = parser.parse_args()
54
+
55
+ print("--- Chuẩn bị dataset... ---")
56
+ df = pd.read_parquet('news_sapo_processed.parquet')
57
+ if args.debug:
58
+ df = df[0:1000].reset_index(drop=True)
59
+
60
+ train_df, temp_df = train_test_split(df, test_size=0.0042, random_state=42)
61
+ val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)
62
+
63
+ train_dataset = Dataset.from_pandas(train_df[["clean_body", "clean_summary"]].rename(
64
+ columns={"clean_body": "text", "clean_summary": "summary"}))
65
+ val_dataset = Dataset.from_pandas(val_df[["clean_body", "clean_summary"]].rename(
66
+ columns={"clean_body": "text", "clean_summary": "summary"}))
67
+ test_dataset = Dataset.from_pandas(test_df[["clean_body", "clean_summary"]].rename(
68
+ columns={"clean_body": "text", "clean_summary": "summary"}))
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
71
+
72
+ def preprocess_function(examples):
73
+ model_inputs = tokenizer(
74
+ examples["text"],
75
+ max_length=args.max_length_body,
76
+ padding="max_length",
77
+ truncation=True
78
+ )
79
+
80
+ with tokenizer.as_target_tokenizer():
81
+ labels = tokenizer(
82
+ examples["summary"],
83
+ max_length=args.max_length_summ,
84
+ padding="max_length",
85
+ truncation=True
86
+ )
87
+
88
+ model_inputs["labels"] = labels["input_ids"]
89
+ return model_inputs
90
+
91
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
92
+ tokenized_val = val_dataset.map(preprocess_function, batched=True)
93
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
94
+
95
+ tokenized_train.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
96
+ tokenized_val.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
97
+ tokenized_test.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
98
+
99
+ train_dataloader = DataLoader(tokenized_train, batch_size=args.batch_size, shuffle=True)
100
+ val_dataloader = DataLoader(tokenized_val, batch_size=args.batch_size)
101
+ test_dataloader = DataLoader(tokenized_test, batch_size=args.batch_size)
102
+
103
+ for batch in train_dataloader:
104
+ print({k: v.shape for k, v in batch.items()})
105
+ break
106
+
107
+ rouge = load("rouge")
108
+
109
+ def evaluate_cus(model, dataloader, tokenizer):
110
+ model.eval()
111
+ preds = []
112
+ labels = []
113
+
114
+ with torch.no_grad():
115
+ for batch in tqdm(dataloader, desc="Evaluating"):
116
+ input_ids = batch['input_ids'].to(device)
117
+ attention_mask = batch['attention_mask'].to(device)
118
+
119
+ generated_tokens = model.generate(
120
+ input_ids=input_ids,
121
+ attention_mask=attention_mask,
122
+ max_length=args.max_length_summ
123
+ )
124
+
125
+ decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
126
+ decoded_labels = tokenizer.batch_decode(batch['labels'].to(device), skip_special_tokens=True)
127
+
128
+ preds.extend(decoded_preds)
129
+ labels.extend(decoded_labels)
130
+
131
+ result = rouge.compute(predictions=preds, references=labels, use_stemmer=True)
132
+ rouge1 = result["rouge1"]
133
+ rouge2 = result["rouge2"]
134
+ rougeL = result["rougeL"]
135
+
136
+ print(f"ROUGE-1: {rouge1:.4f}")
137
+ print(f"ROUGE-2: {rouge2:.4f}")
138
+ print(f"ROUGE-L: {rougeL:.4f}")
139
+
140
+ return rougeL
141
+ if args.do_train:
142
+ print("--- Training ---")
143
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
144
+
145
+ model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base").to(device)
146
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
147
+
148
+ best_rougeL = 0
149
+ num_training_steps = len(train_dataloader) * args.num_epochs
150
+ lr_scheduler = get_scheduler(
151
+ "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
152
+ )
153
+ results_history = []
154
+ for epoch in range(args.num_epochs):
155
+ model.train()
156
+ total_loss = 0
157
+ progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}")
158
+
159
+ for batch in progress_bar:
160
+ batch = {k: v.to(device) for k, v in batch.items()}
161
+ outputs = model(**batch)
162
+ loss = outputs.loss
163
+ loss.backward()
164
+
165
+ optimizer.step()
166
+ lr_scheduler.step()
167
+ optimizer.zero_grad()
168
+
169
+ total_loss += loss.item()
170
+ progress_bar.set_postfix(loss=loss.item())
171
+
172
+ avg_loss = total_loss / len(train_dataloader)
173
+ print(f">>> Avg loss for epoch {epoch+1}: {avg_loss:.4f}")
174
+
175
+ rougeL = evaluate_cus(model, val_dataloader, tokenizer)
176
+ results_history.append({
177
+ "epoch": epoch + 1,
178
+ "loss": avg_loss,
179
+ "rougeL": rougeL
180
+ })
181
+ if rougeL > best_rougeL:
182
+ best_rougeL = rougeL
183
+ print(f">>> New best ROUGE-L: {best_rougeL:.4f}. Saving model...")
184
+ model.save_pretrained("best_model")
185
+ tokenizer.save_pretrained("best_model")
186
+ with open("training_log.json", "w", encoding="utf-8") as f:
187
+ json.dump(results_history, f, indent=4, ensure_ascii=False)
188
+ if args.do_eval:
189
+ print("--- Evaluation on test set ---")
190
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
191
+ model = AutoModelForSeq2SeqLM.from_pretrained("best_model").to(device)
192
+ tokenizer = AutoTokenizer.from_pretrained("best_model")
193
+ evaluate_cus(model, val_dataloader, tokenizer)
mt5_news_sapo_summarization.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re, os, sys
4
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
5
+ import argparse
6
+ import json
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from datasets import Dataset
10
+ import torch
11
+ from torch.utils.data import DataLoader
12
+ from torch.optim import AdamW
13
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
14
+ from tqdm import tqdm
15
+ from transformers import get_scheduler
16
+ from evaluate import load
17
+
18
+ parser = argparse.ArgumentParser()
19
+
20
+ parser.add_argument("--learning_rate",
21
+ default=5e-5,
22
+ type=float)
23
+
24
+ parser.add_argument("--batch_size",
25
+ default=32,
26
+ type=int)
27
+
28
+ parser.add_argument("--max_length_body",
29
+ default=512,
30
+ type=int)
31
+
32
+ parser.add_argument("--max_length_summ",
33
+ default=64,
34
+ type=int)
35
+
36
+ parser.add_argument("--num_epochs",
37
+ default=512,
38
+ type=int)
39
+
40
+ parser.add_argument("--do_train",
41
+ action='store_true',
42
+ help="Whether to run training.")
43
+
44
+ parser.add_argument("--do_eval",
45
+ action='store_true',
46
+ help="Whether to run eval on the test set.")
47
+
48
+ parser.add_argument("--debug",
49
+ action='store_true',
50
+ help="debug")
51
+
52
+
53
+ args = parser.parse_args()
54
+
55
+ print("--- Chuẩn bị dataset... ---")
56
+ df = pd.read_parquet('news_sapo_processed.parquet')
57
+ if args.debug:
58
+ df = df[0:1000].reset_index(drop=True)
59
+
60
+ train_df, temp_df = train_test_split(df, test_size=0.0042, random_state=42)
61
+ val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)
62
+
63
+ train_dataset = Dataset.from_pandas(train_df[["clean_body", "clean_summary"]].rename(
64
+ columns={"clean_body": "text", "clean_summary": "summary"}))
65
+ val_dataset = Dataset.from_pandas(val_df[["clean_body", "clean_summary"]].rename(
66
+ columns={"clean_body": "text", "clean_summary": "summary"}))
67
+ test_dataset = Dataset.from_pandas(test_df[["clean_body", "clean_summary"]].rename(
68
+ columns={"clean_body": "text", "clean_summary": "summary"}))
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
71
+
72
+ def preprocess_function(examples):
73
+ model_inputs = tokenizer(
74
+ examples["text"],
75
+ max_length=args.max_length_body,
76
+ padding="max_length",
77
+ truncation=True
78
+ )
79
+
80
+ with tokenizer.as_target_tokenizer():
81
+ labels = tokenizer(
82
+ examples["summary"],
83
+ max_length=args.max_length_summ,
84
+ padding="max_length",
85
+ truncation=True
86
+ )
87
+
88
+ model_inputs["labels"] = labels["input_ids"]
89
+ return model_inputs
90
+
91
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
92
+ tokenized_val = val_dataset.map(preprocess_function, batched=True)
93
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
94
+
95
+ tokenized_train.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
96
+ tokenized_val.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
97
+ tokenized_test.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
98
+
99
+ train_dataloader = DataLoader(tokenized_train, batch_size=args.batch_size, shuffle=True)
100
+ val_dataloader = DataLoader(tokenized_val, batch_size=args.batch_size)
101
+ test_dataloader = DataLoader(tokenized_test, batch_size=args.batch_size)
102
+
103
+ for batch in train_dataloader:
104
+ print({k: v.shape for k, v in batch.items()})
105
+ break
106
+
107
+ rouge = load("rouge")
108
+
109
+ def evaluate_cus(model, dataloader, tokenizer):
110
+ model.eval()
111
+ preds = []
112
+ labels = []
113
+
114
+ with torch.no_grad():
115
+ for batch in tqdm(dataloader, desc="Evaluating"):
116
+ input_ids = batch['input_ids'].to(device)
117
+ attention_mask = batch['attention_mask'].to(device)
118
+
119
+ generated_tokens = model.generate(
120
+ input_ids=input_ids,
121
+ attention_mask=attention_mask,
122
+ max_length=args.max_length_summ
123
+ )
124
+
125
+ decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
126
+ decoded_labels = tokenizer.batch_decode(batch['labels'].to(device), skip_special_tokens=True)
127
+
128
+ preds.extend(decoded_preds)
129
+ labels.extend(decoded_labels)
130
+
131
+ result = rouge.compute(predictions=preds, references=labels, use_stemmer=True)
132
+ rouge1 = result["rouge1"]
133
+ rouge2 = result["rouge2"]
134
+ rougeL = result["rougeL"]
135
+
136
+ print(f"ROUGE-1: {rouge1:.4f}")
137
+ print(f"ROUGE-2: {rouge2:.4f}")
138
+ print(f"ROUGE-L: {rougeL:.4f}")
139
+
140
+ return rougeL
141
+ if args.do_train:
142
+ print("--- Training ---")
143
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
144
+
145
+ model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-base").to(device)
146
+ optimizer = AdamW(model.parameters(), lr=args.learning_rate)
147
+
148
+ best_rougeL = 0
149
+ num_training_steps = len(train_dataloader) * args.num_epochs
150
+ lr_scheduler = get_scheduler(
151
+ "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
152
+ )
153
+ results_history = []
154
+ for epoch in range(args.num_epochs):
155
+ model.train()
156
+ total_loss = 0
157
+ progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}")
158
+
159
+ for batch in progress_bar:
160
+ batch = {k: v.to(device) for k, v in batch.items()}
161
+ outputs = model(**batch)
162
+ loss = outputs.loss
163
+ loss.backward()
164
+
165
+ optimizer.step()
166
+ lr_scheduler.step()
167
+ optimizer.zero_grad()
168
+
169
+ total_loss += loss.item()
170
+ progress_bar.set_postfix(loss=loss.item())
171
+
172
+ avg_loss = total_loss / len(train_dataloader)
173
+ print(f">>> Avg loss for epoch {epoch+1}: {avg_loss:.4f}")
174
+
175
+ rougeL = evaluate_cus(model, val_dataloader, tokenizer)
176
+ results_history.append({
177
+ "epoch": epoch + 1,
178
+ "loss": avg_loss,
179
+ "rougeL": rougeL
180
+ })
181
+ if rougeL > best_rougeL:
182
+ best_rougeL = rougeL
183
+ print(f">>> New best ROUGE-L: {best_rougeL:.4f}. Saving model...")
184
+ model.save_pretrained("best_model")
185
+ tokenizer.save_pretrained("best_model")
186
+ with open("training_log.json", "w", encoding="utf-8") as f:
187
+ json.dump(results_history, f, indent=4, ensure_ascii=False)
188
+ if args.do_eval:
189
+ print("--- Evaluation on test set ---")
190
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
191
+ model = AutoModelForSeq2SeqLM.from_pretrained("best_model").to(device)
192
+ tokenizer = AutoTokenizer.from_pretrained("best_model")
193
+ evaluate_cus(model, val_dataloader, tokenizer)