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Abstract 

Protein folding and docking framework is crucial for computational structural 

biology. It can deliver a corresponding 3D structure using given constrains (e.g. 

distance and orientation distribution constraints proposed by trRosetta). In this paper, 

we propose OPUS-Fold3, a gradient-based all-atom folding and docking framework. 

OPUS-Fold3 is capable of modeling protein backbone and side chains either 

separately or simultaneously using given constrains. As a docking framework, 

OPUS-Fold3 is also capable of dealing with the constrains between the receptor and 

ligand. In addition, if a constrain (or potential function) can be represented as a 

function of heavy atoms’ position, it can be easily introduced into OPUS-Fold3 to 

further improve the folding and docking accuracy. OPUS-Fold3 is written in Python 

and TensorFlow2.4, which is user-friendly to any source-code level modification, and 

can be conveniently incorporated with other TensorFlow-based models. 
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Introduction 

Generalizing a corresponding protein 3D structure with given constrains is an 

important task in computational structural biology. In the past few decades, many 

methods have been proposed to tackle this issue 1-4. In protein structure prediction, the 

contact map-based methods, such as RaptorX-Contact 5, used Crystallography and 

NMR System (CNS) 1 to optimize against their predicted binary distance contact 

constraints to obtain the final 3D prediction. There are also some methods, such as 

CONFOLD 6 and pyconsFold 7, that used CNS suite 1 as their underlying folding 

schemes and introduced some other constrains to achieve better results. Recently, 

depending on the pyRosetta folding scheme 2, 3, the distance and orientation 

distribution constraints have been proposed in trRosetta 8, which become one of the 

most common constraints in the field. 

 In our previous study, we developed OPUS-Fold2 to respectively model the 

backbone 9 and side chains 10 using the distance and orientation distribution 

constraints proposed by trRosetta 8. However, both folding backbone exclusively 9 

and folding side chains with fixed backbone 10 have limited usages. Therefore, in 

OPUS-Fold3, we refine and refactor the code in OPUS-Fold2 to form an all-atom 

folding scheme so that backbone and side chains can be adjusted simultaneously 

during the folding process, which is beneficial to the tasks that require all-atom 

simulation. In addition, OPUS-Fold3 is also capable of dealing with the constrains 

between the receptor and ligand, therefore it can be used as an underlying docking 

scheme. 
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Methods 

Datasets 

For evaluating the performance on monomer target, we use CAMEO60 11 that 

contains 60 monomer hard targets released between January 2020 and July 2020 from 

the CAMEO website 12. For evaluating the performance on oligomer target, we 

construct an oligomer dataset CAMEO75o that contains 75 targets with two peptide 

chains and < 1000 residues in length from CAMEO-Homo, CAMEO-Hetero, and 

CAMEO93o 13. The first peptide chain in the PDB file is defined as “receptor”, and 

the last peptide chain in the PDB file is defined as “ligand”. 

 

OPUS-Fold3 

OPUS-Fold3 is a gradient-based all-atom folding and docking framework. The 

folding related variables in OPUS-Fold3 include backbone torsion angles (Φ, Ψ and Ω) 

and side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4) of all residues. The docking related 

variables in OPUS-Fold3 include 6 parameters in rotation matrix and 3 parameters in 

translation matrix. Here, we use the distance and orientation distribution constraints 

proposed by trRosetta 8. Other constrains can be easily introduced into OPUS-Fold3 

provided they can be represented as functions of heavy atoms’ position. 

The loss function of trRosetta-style constrains is defined as follows: 
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Same as the definitions in trRosetta 8, 	�
�����  is the collection of distance (Cβ- Cβ 

distance) constraints, in which ��
������� � 0.05. 	�
�	 and 	�
�
 are the 
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collections of ω (Cα1- Cβ1- Cβ2- Cα2) and θ (N1-Cα1- Cβ1- Cβ2 and N2-Cα2- Cβ2- Cβ1) 

constraints, respectively, in which �������� � 0.55. 	�
�� is the collection of φ (Cα1- 

Cβ1- Cβ2 and Cα2- Cβ2- Cβ1) constraints, in which �������� � 0.65. ����� , �	, �
 

and �� are the weights of each term, which are set to be 10, 8, 8 and 8, respectively. 

The distance and orientation distributions are converted to the energy terms by the 

following equations: 

�	�
������ � ��
�� � ln �� ��
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�
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�� � ln ��  
The α is set to be 1.57 14. Same as that in trRosetta 8, the reference state for the 

distance distribution is the probability of the Nth bin [19.5, 20], and that for the 

orientation distribution is the probability of the last bin [165°, 180°]. Here, ��  refers 

to the probability of the ith bin. ��  refers to the distance of the ith bin. Cubic spline 

curves are generated for making the terms differentiable. 

 In addition, the Ramachandran scoring term 15 is used for the regulation of 

backbone torsion angles (Φ and Ψ). We use the radial basis function to make the 

probabilities differentiable. The Omega scoring term is used for the regulation of 

backbone torsion angle (Ω). The weights of the Ramachandran scoring term and the 

Omega scoring term are set to be 0.1 and 0.05, respectively. 

 In OPUS-Fold3, for backbone modeling, the original trRosetta-style constrains in 

trRosetta 8, the Ramachandran scoring term, and the Omega scoring term are 

introduced into the loss function. For side-chain modeling, the modified 

trRosetta-style constrains proposed by OPUS-Rota4 10 are introduced. Specially, four 

sets of constrains are included, for each side-chain dihedral angle (Χ1, Χ2, Χ3, and Χ4), 

the corresponding side-chain atoms that are required for its calculation are defined as 

its pseudo-Cα and Cβ. The detailed pseudo-Cα and Cβ for each side-chain dihedral 

angle can be found in Supplementary Table S1. 

Within a peptide chain, the backbone of each residue is generated one by one 

depending on the backbone torsion angles (Φ, Ψ and Ω), and the side chain is then 
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constructed based on the side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4). In the docking 

procedure, a rotation matrix that contains 6 parameters and a translation matrix that 

contains 3 parameters are used to model the relative position between the receptor and 

ligand. Therefore, the coordinates of all atoms in the ligand will be additionally 

transformed using the transformation matrixes mentioned above.  

OPUS-Fold3 is based on TensorFlow2.4 16, and the Adam 17 optimizer is used to 

optimize our loss function with an initial learning rate of 0.5. 

 

Performance Metrics 

We use TM-score 18 to measure the accuracy of the predicted backbone. Mean 

absolute error (MAE) of Χ1, Χ2, Χ3, and Χ4 are used to measure the accuracy of the 

predicted side chains. In addition, ACC is used as the representation of the percentage 

of correct prediction with a tolerance criterion 20° for all side-chain dihedral angles 

(from Χ1 to Χ4). 
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Results 

Backbone Folding 

In Table 1, we compare the backbone folding performance of OPUS-Fold3 with that 

of the pyRosetta folding protocol in trRosetta 8 on CAMEO60 using the identical 

constrains as the inputs. The results show that OPUS-Fold3 achieves comparable 

performance to pyRosetta either using the predicted constrains from OPUS-Contact 9 

or using the real constrains derived from the corresponding PDB-file. Here, 

OPUS-Fold3 adopts the predicted backbone torsion angles (Φ and Ψ) from 

OPUS-TASS2 9 as its initial state. When using the random values as the initial 

backbone torsion angles (Φ and Ψ), the performance is slightly decreased 

(OPUS-Fold3 (random) in Table 1). 

 

Table 1. The TM-score of each method on CAMEO60. “Predicted” denotes the results using the 

distance and orientation constrains predicted by OPUS-Contact. “PDB” denotes the results using 

the real distance and orientation constrains derived from the corresponding PDB-file. 

pyRosetta OPUS-Fold3 OPUS-Fold3 (random) 

Predicted 0.618  0.612  0.606  

PDB 0.983  0.987  0.954  

 

As examples, we show the backbone folding processes of OPUS-Fold3 and 

OPUS-Fold3 (random) using the real constrains derived from the corresponding 

PDB-file on monomer target 2020-01-04_00000019_1 in Supplementary Figure S1. 

The results indicate that when using the predicted backbone torsion angles (Φ and Ψ) 

as the initial state, OPUS-Fold3 achieves better results within less optimization 

epochs comparing to OPUS-Fold3 (random). For further illustration, some 

intermediate structures during the backbone folding process of OPUS-Fold3 are 

shown in Figure 1, and the folding trajectory of OPUS-Fold3 (random) is shown as a 

movie in Supplementary Video S1. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506128doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506128
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. Some intermediate structures of target 2020-01-04_00000019_1 (with 226 residues in 

length) during the backbone folding process of OPUS-Fold3. The red structures are the 

intermediate structures and the blue structure is its native state. a)-g) show the intermediate 

structures at epoch 0, 200, 400, 600, 1200, 1800, and 2400, respectively. h) is the final perdition. 

 

Side-chain and All-atom Folding 

In Table 2, we list the results of OPUS-Fold3 on side-chain and all-atom modeling. 

Here, the real constrains derived from the corresponding PDB-file are used so that we 

could measure the performance of OPUS-Fold3 through the differences of the 

predicted structure from its native counterpart. Random values are used as the initial 

backbone torsion angles (Φ and Ψ) and side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4).  

When modeling the side chains with a fixed native backbone (OPUS-Fold3 (sc 

only) in Table 2), the results show that the predicted side chains are very close to their 

native counterparts, which indicates the effectiveness of OPUS-Fold3 on delivering 

the corresponding side-chain conformation with given constrains. As an example, the 

folding trajectory of OPUS-Fold3 (sc only) on monomer target 

2020-02-15_00000234_1 (with 338 residues in length) is shown as a movie in 
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Supplementary Video S2.  

The results also show that when modeling the side chains with a fixed native 

backbone at first 2400 epochs, and relaxing all atoms at last 600 epochs (OPUS-Fold3 

in Table 2), the accuracy of the side-chain modeling is increased, which indicates the 

backbone relaxation may be helpful to the side-chain reconstruction.  

When modeling the backbone and side chains simultaneously from scratch 

(OPUS-Fold3 (scratch) in Table 2), the backbone folding performance is better than 

that obtained by modeling the backbone exclusively using random initial torsion 

angles (OPUS-Fold3 (random) in Table 1). However, the accuracy of the side-chain 

modeling is decreased, which indicates that the correct backbone conformation is 

crucial for side-chain modeling. 

 

Table 2. The side-chain and all-atom modeling performance of OPUS-Fold3 on CAMEO60. 
“OPUS-Fold3 (sc only)” denotes the procedure that models the side chains with a fixed native 

backbone. “OPUS-Fold3” denotes the procedure that models the side chains with a fixed native 

backbone at first 2400 epochs, and relaxes all atoms at last 600 epochs. “OPUS-Fold3 (scratch)” 

denotes the procedure that models the backbone and side chains simultaneously from scratch. 

Here, for each procedure, the real distance and orientation constrains derived from the 

corresponding PDB-file are used. Random values are set as the initial backbone torsion angles (Φ 

and Ψ) and side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4). 
OPUS-Fold3 (sc only) OPUS-Fold3 OPUS-Fold3 (scratch) 

TM-score 1.000  0.999  0.961  

ACC 92.30% 93.21% 75.77% 

MAE (Χ1) 4.69  4.18  13.88  

MAE (Χ2) 9.07  7.97  13.86  

MAE (Χ3) 20.45  20.22  20.35  

MAE (Χ4) 29.22  26.43  25.66  

 

Protein-protein Docking 

In Table 3, we list the protein-protein docking performance of OPUS-Fold3 on 

CAMEO75o using the real constrains derived from the corresponding PDB-file. The 

results show that OPUS-Fold3 is capable of delivering the correct docking pose when 

the backbones of receptor and ligand are known (OPUS-Fold3 in Table 3). We show 
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some intermediate structures during the protein-protein docking process of 

OPUS-Fold3 on hetero-oligomer target 7SPP in Figure 2. 

In addition, we verify the performance of OPUS-Fold3 on simultaneously 

modeling the backbones of receptor and ligand and the docking pose between them 

from scratch (OPUS-Fold3 (bbfold) in Table 3). Here, Random values are set as the 

initial backbone torsion angles (Φ and Ψ). As an example, the trajectory of 

OPUS-Fold3 (bbfold) on hetero-oligomer target 7SPP is shown as a movie in 

Supplementary Video S3. The results also indicate that the all-atom folding and 

docking procedure (OPUS-Fold3 (aafold) in Table 3) may achieve better performance 

than that using the constrains of backbone exclusively (OPUS-Fold3 (bbfold) in Table 

3). 

 For further illustration, we show a folding and docking trajectory on 

hetero-oligomer target 7VNB as a movie in Supplementary Video S4. The backbones 

of receptor and ligand are known at first, and random values are set as the initial 

side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4). OPUS-Fold3 docks the receptor and 

ligand in the first 200 epochs, then models the side chains in the following 2400 

epochs, and finally performs the folding and docking simultaneously on all atoms at 

last 600 epochs as relaxation. The results show that with given constraints, 

OPUS-Fold3 is capable of delivering the corresponding 3D structure either for folding 

or for docking usage. 

 

Table 3. The protein-protein docking performance of OPUS-Fold3 on CAMEO75o. “OPUS-Fold3” 

denotes the procedure that models the docking pose with fixed native backbones of receptor and 

ligand. “OPUS-Fold3 (bbfold)” denotes the procedure that simultaneously models the backbones 

of receptor and ligand and the docking pose between them from scratch. “OPUS-Fold3 (aafold)” 

denotes the procedure that simultaneously models the all atoms of receptor and ligand and the 

docking pose between them from scratch. Here, for each procedure, the real distance and 

orientation constrains derived from the corresponding PDB-file are used. Random values are set as 

the initial backbone torsion angles (Φ and Ψ) and side-chain dihedral angles (Χ1, Χ2, Χ3, and Χ4) for 

the relevant tasks. 

TM-score 

OPUS-Fold3 0.994  

OPUS-Fold3 (bbfold) 0.918  
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OPUS-Fold3 (aafold) 0.933  

 

 
Figure 2. Some intermediate structures of hetero-oligomer target 7SPP during the protein-protein 

docking process of OPUS-Fold3. The blue and yellow structures are the native backbones of the 

receptor and ligand, respectively. The red and green structures are their corresponding 

intermediate structures. a)-d) show the intermediate structures at epoch 0, 40, 50, and 200, 

respectively. 
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Conclusion 

In this paper, we propose OPUS-Fold3, a gradient-based protein all-atom folding and 

docking framework. OPUS-Fold3 is capable of accurately delivering the 

corresponding protein 3D folding and docking conformation using given constrains 

(e.g. comparable performance to pyRosetta on backbone folding task). OPUS-Fold3 is 

an open-source method that is written in Python and TensorFlow2.4, so that it can be 

conveniently incorporated with other TensorFlow-based models. 
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