Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import datasets | |
| from tqdm.auto import tqdm | |
| # Find for instance the citation on arxiv or on the dataset repo/website | |
| _CITATION = """\ | |
| @article{DBLP:journals/corr/abs-2111-09344, | |
| author = {Daniel Galvez and | |
| Greg Diamos and | |
| Juan Ciro and | |
| Juan Felipe Ceron and | |
| Keith Achorn and | |
| Anjali Gopi and | |
| David Kanter and | |
| Maximilian Lam and | |
| Mark Mazumder and | |
| Vijay Janapa Reddi}, | |
| title = {The People's Speech: A Large-Scale Diverse English Speech Recognition | |
| Dataset for Commercial Usage}, | |
| journal = {CoRR}, | |
| volume = {abs/2111.09344}, | |
| year = {2021}, | |
| url = {https://arxiv.org/abs/2111.09344}, | |
| eprinttype = {arXiv}, | |
| eprint = {2111.09344}, | |
| timestamp = {Mon, 22 Nov 2021 16:44:07 +0100}, | |
| biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib}, | |
| bibsource = {dblp computer science bibliography, https://dblp.org} | |
| } | |
| """ | |
| # You can copy an official description | |
| _DESCRIPTION = """\ | |
| The People's Speech is a free-to-download 30,000-hour and growing supervised | |
| conversational English speech recognition dataset licensed for academic and | |
| commercial usage under CC-BY-SA (with a CC-BY subset). | |
| """ | |
| _HOMEPAGE = "https://mlcommons.org/en/peoples-speech/" | |
| _LICENSE = [ | |
| "cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5", | |
| "cc-by-sa-3.0", "cc-by-sa-4.0" | |
| ] | |
| _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/" | |
| # relative path to data inside dataset's repo | |
| _DATA_URL = _BASE_URL + "{split}/{config}/{config}_{archive_id:06d}.tar" | |
| # relative path to file containing number of audio archives inside dataset's repo | |
| _N_SHARDS_URL = _BASE_URL + "n_shards.json" | |
| # relative path to metadata inside dataset's repo | |
| _MANIFEST_URL = _BASE_URL + "{split}/{config}.json" | |
| class PeoplesSpeechConfig(datasets.BuilderConfig): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| class PeoplesSpeech(datasets.GeneratorBasedBuilder): | |
| """The People's Speech dataset.""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| PeoplesSpeechConfig(name="microset", version=VERSION, description="Small subset of clean data for example pusposes."), | |
| PeoplesSpeechConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."), | |
| PeoplesSpeechConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."), | |
| PeoplesSpeechConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."), | |
| PeoplesSpeechConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."), | |
| PeoplesSpeechConfig(name="test", version=VERSION, description="Only test data."), | |
| PeoplesSpeechConfig(name="validation", version=VERSION, description="Only validation data."), | |
| ] | |
| DEFAULT_CONFIG_NAME = "clean" | |
| DEFAULT_WRITER_BATCH_SIZE = 512 | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "audio": datasets.Audio(), | |
| "duration_ms": datasets.Value("int32"), | |
| "text": datasets.Value("string"), | |
| } | |
| ), | |
| homepage=_HOMEPAGE, | |
| license="/".join(_LICENSE), # license must be a string | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| if self.config.name == "microset": | |
| # take only first data archive for demo purposes | |
| url = [_DATA_URL.format(split="train", config="clean", archive_id=0)] | |
| archive_path = dl_manager.download(url) | |
| local_extracted_archive_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else [None] | |
| manifest_url = _MANIFEST_URL.format(split="train", config="clean_000000") # train/clean_000000.json | |
| manifest_path = dl_manager.download_and_extract(manifest_url) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "local_extracted_archive_paths": local_extracted_archive_path, | |
| # use iter_archive here to access the files in the TAR archives: | |
| "archives": [dl_manager.iter_archive(path) for path in archive_path], | |
| "manifest_path": manifest_path, | |
| }, | |
| ), | |
| ] | |
| n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) | |
| with open(n_shards_path, encoding="utf-8") as f: | |
| n_shards = json.load(f) | |
| if self.config.name in ["validation", "test"]: | |
| splits_to_configs = {self.config.name: self.config.name} | |
| else: | |
| splits_to_configs = { | |
| "train": self.config.name, | |
| "validation": "validation", | |
| "test": "test" | |
| } | |
| audio_urls = { | |
| split: [ | |
| _DATA_URL.format(split=split, config=config, archive_id=i) for i in range(n_shards[split][config]) | |
| ] for split, config in splits_to_configs.items() | |
| } | |
| audio_archive_paths = dl_manager.download(audio_urls) | |
| # In non-streaming mode, we extract the archives to have the data locally: | |
| local_extracted_archive_paths = dl_manager.extract(audio_archive_paths) \ | |
| if not dl_manager.is_streaming else \ | |
| {split: [None] * len(audio_archive_paths[split]) for split in splits_to_configs} | |
| manifest_urls = { | |
| split: _MANIFEST_URL.format(split=split, config=config) for split, config in splits_to_configs.items() | |
| } | |
| manifest_paths = dl_manager.download_and_extract(manifest_urls) | |
| # To access the audio data from the TAR archives using the download manager, | |
| # we have to use the dl_manager.iter_archive method | |
| # | |
| # This is because dl_manager.download_and_extract | |
| # doesn't work to stream TAR archives in streaming mode. | |
| # (we have to stream the files of a TAR archive one by one) | |
| # | |
| # The iter_archive method returns an iterable of (path_within_archive, file_obj) for every | |
| # file in a TAR archive. | |
| splits_to_names = { | |
| "train": datasets.Split.TRAIN, | |
| "validation": datasets.Split.VALIDATION, | |
| "test": datasets.Split.TEST, | |
| } | |
| split_generators = [] | |
| for split in splits_to_configs: | |
| split_generators.append( | |
| datasets.SplitGenerator( | |
| name=splits_to_names[split], | |
| gen_kwargs={ | |
| "local_extracted_archive_paths": local_extracted_archive_paths[split], | |
| # use iter_archive here to access the files in the TAR archives: | |
| "archives": [dl_manager.iter_archive(path) for path in audio_archive_paths[split]], | |
| "manifest_path": manifest_paths[split], | |
| } | |
| ) | |
| ) | |
| return split_generators | |
| def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path): | |
| meta = dict() | |
| with open(manifest_path, "r", encoding="utf-8") as f: | |
| for line in tqdm(f, desc="reading metadata file"): | |
| sample_meta = json.loads(line) | |
| _id = sample_meta["audio_document_id"] | |
| texts = sample_meta["training_data"]["label"] | |
| audio_filenames = sample_meta["training_data"]["name"] | |
| durations = sample_meta["training_data"]["duration_ms"] | |
| for audio_filename, text, duration in zip(audio_filenames, texts, durations): | |
| audio_filename = audio_filename.lstrip("./") | |
| meta[audio_filename] = { | |
| "audio_document_id": _id, | |
| "text": text, | |
| "duration_ms": duration | |
| } | |
| for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives): | |
| # Here we iterate over all the files within the TAR archive: | |
| for audio_filename, audio_file in archive: | |
| audio_filename = audio_filename.lstrip("./") | |
| # if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it | |
| # joining path to directory that the archive was extracted to and audio filename. | |
| path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \ | |
| else audio_filename | |
| yield audio_filename, { | |
| "id": audio_filename, | |
| "audio": {"path": path, "bytes": audio_file.read()}, | |
| "text": meta[audio_filename]["text"], | |
| "duration_ms": meta[audio_filename]["duration_ms"] | |
| } | |