Datasets:

Languages:
English
ArXiv:
License:
aspartate commited on
Commit
b9dc1ff
·
1 Parent(s): 63637b0
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -32,18 +32,18 @@ library_name: timm
32
  ---
33
 
34
  # ♆ Patho-Bench
35
- [📄 Preprint](https://arxiv.org/pdf/2502.06750) | [Code](https://github.com/mahmoodlab/patho-bench)
36
 
37
  <img src="patho_bench_public.png" alt="Patho-Bench" style="width: 38%;" align="right"/>
38
 
39
  **Patho-Bench is designed for high-throughput evaluations of patch and slide encoder foundation models for whole-slide images (WSIs).**
40
 
41
- This HuggingFace repository contains the data splits for the public Patho-Bench tasks. Please visit our codebase on [GitHub](https://github.com/mahmoodlab/patho-bench) for the full codebase and benchmark implementation.
42
 
43
  This project was developed by the [Mahmood Lab](https://faisal.ai/) at Harvard Medical School and Brigham and Women's Hospital.
44
 
45
  > [!NOTE]
46
- > Contributions are welcome! If you'd like to submit a new dataset and/or task for inclusion in Patho-Bench, please reach out to us via the [Issues](https://github.com/mahmoodlab/patho-bench/issues) tab of our Github repo.
47
 
48
  Currently, Patho-Bench contains the following task families. We will add more tasks in the future. For further details on each task, please refer to the [THREADS foundation model paper](https://arxiv.org/abs/2501.16652).
49
 
@@ -75,7 +75,7 @@ login(token="YOUR_HUGGINGFACE_TOKEN")
75
 
76
  ## ⬇️ Usage
77
 
78
- The Patho-Bench data splits are designed for use with the Patho-Bench [software package](https://github.com/mahmoodlab/patho-bench). However, you are welcome to use the data splits in your custom pipeline. Each task is associated with a YAML file containing task metadata and a CSV file containing the sample IDs, slide IDs, and labels.
79
 
80
  > [!NOTE]
81
  > Patho-Bench only provides the data splits and labels, NOT the raw image data. You will need to download the raw image data from the respective dataset repositories (see links below).
@@ -86,7 +86,7 @@ import datasets
86
  dataset='cptac_coad'
87
  task='KRAS_mutation'
88
  datasets.load_dataset(
89
- 'MahmoodLab/patho-bench',
90
  cache_dir='/path/to/saveto',
91
  dataset_to_download=dataset, # Throws error if source not found
92
  task_in_dataset=task, # Throws error if task not found in dataset
@@ -100,7 +100,7 @@ import datasets
100
  dataset='cptac_coad'
101
  task='*'
102
  datasets.load_dataset(
103
- 'MahmoodLab/patho-bench',
104
  cache_dir='/path/to/saveto',
105
  dataset_to_download=dataset,
106
  task_in_dataset=task,
@@ -113,7 +113,7 @@ datasets.load_dataset(
113
  import datasets
114
  dataset='*'
115
  datasets.load_dataset(
116
- 'MahmoodLab/patho-bench',
117
  cache_dir='/path/to/saveto',
118
  dataset_to_download=dataset,
119
  trust_remote_code=True
 
32
  ---
33
 
34
  # ♆ Patho-Bench
35
+ [📄 Preprint](https://arxiv.org/pdf/2502.06750) | [Code](https://github.com/mahmoodlab/Patho-Bench)
36
 
37
  <img src="patho_bench_public.png" alt="Patho-Bench" style="width: 38%;" align="right"/>
38
 
39
  **Patho-Bench is designed for high-throughput evaluations of patch and slide encoder foundation models for whole-slide images (WSIs).**
40
 
41
+ This HuggingFace repository contains the data splits for the public Patho-Bench tasks. Please visit our codebase on [GitHub](https://github.com/mahmoodlab/Patho-Bench) for the full codebase and benchmark implementation.
42
 
43
  This project was developed by the [Mahmood Lab](https://faisal.ai/) at Harvard Medical School and Brigham and Women's Hospital.
44
 
45
  > [!NOTE]
46
+ > Contributions are welcome! If you'd like to submit a new dataset and/or task for inclusion in Patho-Bench, please reach out to us via the [Issues](https://github.com/mahmoodlab/Patho-Bench/issues) tab of our Github repo.
47
 
48
  Currently, Patho-Bench contains the following task families. We will add more tasks in the future. For further details on each task, please refer to the [THREADS foundation model paper](https://arxiv.org/abs/2501.16652).
49
 
 
75
 
76
  ## ⬇️ Usage
77
 
78
+ The Patho-Bench data splits are designed for use with the Patho-Bench [software package](https://github.com/mahmoodlab/Patho-Bench). However, you are welcome to use the data splits in your custom pipeline. Each task is associated with a YAML file containing task metadata and a CSV file containing the sample IDs, slide IDs, and labels.
79
 
80
  > [!NOTE]
81
  > Patho-Bench only provides the data splits and labels, NOT the raw image data. You will need to download the raw image data from the respective dataset repositories (see links below).
 
86
  dataset='cptac_coad'
87
  task='KRAS_mutation'
88
  datasets.load_dataset(
89
+ 'MahmoodLab/Patho-Bench',
90
  cache_dir='/path/to/saveto',
91
  dataset_to_download=dataset, # Throws error if source not found
92
  task_in_dataset=task, # Throws error if task not found in dataset
 
100
  dataset='cptac_coad'
101
  task='*'
102
  datasets.load_dataset(
103
+ 'MahmoodLab/Patho-Bench',
104
  cache_dir='/path/to/saveto',
105
  dataset_to_download=dataset,
106
  task_in_dataset=task,
 
113
  import datasets
114
  dataset='*'
115
  datasets.load_dataset(
116
+ 'MahmoodLab/Patho-Bench',
117
  cache_dir='/path/to/saveto',
118
  dataset_to_download=dataset,
119
  trust_remote_code=True