Datasets:

Languages:
English
ArXiv:
License:
aspartate commited on
Commit
d56490a
·
1 Parent(s): f46e61b
Files changed (1) hide show
  1. README.md +183 -0
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-nd-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - histology
7
+ - pathology
8
+ - vision
9
+ - pytorch
10
+ extra_gated_prompt: >-
11
+ The data and associated code are released under the CC-BY-NC 4.0 license and may only be used for non-commercial, academic research purposes with proper attribution.
12
+ If you are a commercial entity, please contact the corresponding author.
13
+ extra_gated_fields:
14
+ Full name (first and last): text
15
+ Current affiliation (no abbreviations): text
16
+ Type of Affiliation:
17
+ type: select
18
+ options:
19
+ - Academia
20
+ - Industry
21
+ - label: Other
22
+ value: other
23
+ Current and official institutional email (**this must match your primary email in your Hugging Face account, @gmail/@hotmail/@qq email domains will be denied**): text
24
+ Please explain your intended research use: text
25
+ I agree to all terms outlined above: checkbox
26
+ I agree to use this model for non-commercial, academic purposes only: checkbox
27
+ I agree not to distribute the model, if another user within your organization wishes to use Patho-Bench data, they must register as an individual user: checkbox
28
+ metrics:
29
+ - accuracy
30
+ pipeline_tag: image-feature-extraction
31
+ library_name: timm
32
+ ---
33
+
34
+ # ♆ Patho-Bench
35
+ [📄 Preprint](https://arxiv.org/pdf/2501.16652) | [Code](https://github.com/mahmoodlab/patho-bench)
36
+
37
+ <!-- <img src="benchmark.png" alt="Patho-Bench" style="width: 38%;" align="right"/> -->
38
+
39
+ **Patho-Bench is designed for high-throughput evaluations of patch and slide encoder foundation models for whole-slide images (WSIs).**
40
+
41
+ This HuggingFace repository contains the data splits for the public Patho-Bench tasks. Please visit our codebase on [GitHub](https://github.com/mahmoodlab/patho-bench) for the full codebase and benchmark implementation.
42
+
43
+ This project was developed by the [Mahmood Lab](https://faisal.ai/) at Harvard Medical School and Brigham and Women's Hospital.
44
+
45
+ > [!NOTE]
46
+ > Contributions are welcome! If you'd like to submit a new dataset and/or task for inclusion in Patho-Bench, please reach out to us via the [Issues](https://github.com/mahmoodlab/patho-bench/issues) tab of our Github repo.
47
+
48
+ Currently, Patho-Bench contains the following task families. We will add more tasks in the future. For further details on each task, please refer to the [THREADS foundation model paper](https://arxiv.org/abs/2501.16652).
49
+
50
+ | **Family** | **Description** | **Tasks** |
51
+ |--------------------------------------|---------------------------------------------------------------------------------------|----------|
52
+ | **Morphological Subtyping** | Classifying distinct morphological patterns associated with different disease subtypes | 4 |
53
+ | **Tumor Grading** | Assigning a grade based on cellular differentiation and growth patterns | 2 |
54
+ | **Molecular Subtyping** | Predicting antigen presence (e.g., via IHC staining) | 3 |
55
+ | **Mutation Prediction** | Predicting specific genetic mutations in tumors | 21 |
56
+ | **Treatment Response & Assessment** | Evaluating patient response to treatment | 6 |
57
+ | **Survival Prediction** | Predicting survival outcomes and risk stratification | 6 |
58
+
59
+ ## 🔥 Latest updates
60
+ - **January 2025**: Patho-Bench is now available on HuggingFace.
61
+
62
+ ## ⚡ Installation
63
+ Install the required packages:
64
+ ```
65
+ pip install --upgrade datasets
66
+ pip install --upgrade huggingface_hub
67
+ ```
68
+
69
+ ## 🔑 Authentication
70
+
71
+ ```python
72
+ from huggingface_hub import login
73
+ login(token="YOUR_HUGGINGFACE_TOKEN")
74
+ ```
75
+
76
+ ## ⬇️ Usage
77
+
78
+ The Patho-Bench data splits are designed for use with the Patho-Bench [software package](https://github.com/mahmoodlab/patho-bench). However, you are welcome to use the data splits in your custom pipeline. Each task is associated with a YAML file containing task metadata and a CSV file containing the sample IDs, slide IDs, and labels.
79
+
80
+ > [!NOTE]
81
+ > Patho-Bench only provides the data splits and labels, NOT the raw image data. You will need to download the raw image data from the respective dataset repositories (see links below).
82
+
83
+ ### Download an individual task
84
+ ```python
85
+ import datasets
86
+ dataset='cptac_coad'
87
+ task='KRAS_mutation'
88
+ datasets.load_dataset(
89
+ 'MahmoodLab/patho-bench',
90
+ cache_dir='/path/to/saveto',
91
+ dataset_to_download=dataset, # Throws error if source not found
92
+ task_in_dataset=task, # Throws error if task not found in dataset
93
+ trust_remote_code=True
94
+ )
95
+ ```
96
+
97
+ ### Download all tasks from a dataset
98
+ ```python
99
+ import datasets
100
+ dataset='cptac_coad'
101
+ task='*'
102
+ datasets.load_dataset(
103
+ 'MahmoodLab/patho-bench',
104
+ cache_dir='/path/to/saveto',
105
+ dataset_to_download=dataset,
106
+ task_in_dataset=task,
107
+ trust_remote_code=True
108
+ )
109
+ ```
110
+
111
+ ### Download entire Patho-Bench [4.2 MB]
112
+ ```python
113
+ import datasets
114
+ dataset='*'
115
+ datasets.load_dataset(
116
+ 'MahmoodLab/patho-bench',
117
+ cache_dir='/path/to/saveto',
118
+ dataset_to_download=dataset,
119
+ trust_remote_code=True
120
+ )
121
+ ```
122
+
123
+ ## 📢 Image data access links
124
+
125
+ For each dataset in Patho-Bench, please visit the respective repository below to download the raw image data.
126
+
127
+ | Dataset | Link |
128
+ |---------|------|
129
+ | EBRAINS [Roetzer et al., 2022] | [https://doi.org/10.25493/WQ48-ZGX](https://doi.org/10.25493/WQ48-ZGX) |
130
+ | BRACS [Brancati et al., 2021] | [https://www.bracs.icar.cnr.it/](https://www.bracs.icar.cnr.it/) |
131
+ | PANDA [Bulten et al., 2022] | [https://panda.grand-challenge.org/data/](https://panda.grand-challenge.org/data/) |
132
+ | IMP [Neto et al., 2024] | [https://rdm.inesctec.pt/dataset/nis-2023-008](https://rdm.inesctec.pt/dataset/nis-2023-008) |
133
+ | BCNB [Xu et al., 2021] | [https://bupt-ai-cz.github.io/BCNB/](https://bupt-ai-cz.github.io/BCNB/) |
134
+ | CPTAC-BRCA [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-brca/](https://www.cancerimagingarchive.net/collection/cptac-brca/) |
135
+ | CPTAC-CCRCC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-ccrcc/](https://www.cancerimagingarchive.net/collection/cptac-ccrcc/) |
136
+ | CPTAC-COAD [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-coad/](https://www.cancerimagingarchive.net/collection/cptac-coad/) |
137
+ | CPTAC-GBM [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-gbm/](https://www.cancerimagingarchive.net/collection/cptac-gbm/) |
138
+ | CPTAC-HNSC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-hnsc/](https://www.cancerimagingarchive.net/collection/cptac-hnsc/) |
139
+ | CPTAC-LSCC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-lscc/](https://www.cancerimagingarchive.net/collection/cptac-lscc/) |
140
+ | CPTAC-LUAD [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-luad/](https://www.cancerimagingarchive.net/collection/cptac-luad/) |
141
+ | CPTAC-PDAC [Edwards et al., 2015] | [https://www.cancerimagingarchive.net/collection/cptac-pda/](https://www.cancerimagingarchive.net/collection/cptac-pda/) |
142
+ | MUT-HET-RCC | [https://doi.org/10.25452/figshare.plus.c.5983795](https://doi.org/10.25452/figshare.plus.c.5983795) |
143
+ | OV-Bevacizumab [Wang et al., 2022] | [https://www.nature.com/articles/s41597-022-01127-6](https://www.nature.com/articles/s41597-022-01127-6) |
144
+ | NADT-Prostate [Wilkinson et al., 2021] | [https://www.medrxiv.org/content/10.1101/2020.09.29.20199711v1.full](https://www.medrxiv.org/content/10.1101/2020.09.29.20199711v1.full) |
145
+ | POST-NAT-BRCA | [https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23244](https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.23244) |
146
+ | BOEHMK | [https://www.synapse.org/Synapse:syn25946117/wiki/611576](https://www.synapse.org/Synapse:syn25946117/wiki/611576) |
147
+ | MBC | [https://www.synapse.org/Synapse:syn59490671/wiki/628046](https://www.synapse.org/Synapse:syn59490671/wiki/628046) |
148
+ | SURGEN | [https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1285](https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1285) |
149
+
150
+ ## 📇 Contact
151
+ For any questions, contact:
152
+
153
+ - Faisal Mahmood ([email protected])
154
+ - Anurag Vaidya ([email protected])
155
+ - Andrew Zhang ([email protected])
156
+ - Guillaume Jaume ([email protected])
157
+
158
+ ## 📜 Data description
159
+ Developed by: Mahmood Lab AI for Pathology @ Harvard/BWH
160
+ Repository: GitHub
161
+ License: CC-BY-NC-4.0
162
+
163
+ ## 🤝 Acknowledgements
164
+ Patho-Bench tasks were compiled from public image datasets and repositories (linked above). We thank the authors of these datasets for making their data publicly available.
165
+
166
+ ## 📰 How to cite
167
+ If Patho-Bench contributes to your research, please cite:
168
+
169
+ ```
170
+ @article{vaidya2025molecular,
171
+ title={Molecular-driven Foundation Model for Oncologic Pathology},
172
+ author={Vaidya, Anurag and Zhang, Andrew and Jaume, Guillaume and Song, Andrew H and Ding, Tong and Wagner, Sophia J and Lu, Ming Y and Doucet, Paul and Robertson, Harry and Almagro-Perez, Cristina and others},
173
+ journal={arXiv preprint arXiv:2501.16652},
174
+ year={2025}
175
+ }
176
+
177
+ @article{zhang2025standardizing,
178
+ title={Accelerating Data Processing and Benchmarking of AI Models for Pathology},
179
+ author={Zhang, Andrew and Jaume, Guillaume and Vaidya, Anurag and Ding, Tong and Mahmood, Faisal},
180
+ journal={arXiv preprint arXiv:2502.06750},
181
+ year={2025}
182
+ }
183
+ ```