import os import datasets from datasets import Features, Value from huggingface_hub import snapshot_download import glob import yaml class PathoBenchConfig(datasets.BuilderConfig): def __init__(self, **kwargs): # Extract task_in_dataset and dataset_to_download from kwargs self.task_in_dataset = kwargs.pop("task_in_dataset", None) self.dataset_to_download = kwargs.pop("dataset_to_download", None) self.force_download = kwargs.pop("force_download", True) # Set default values for task_in_dataset and dataset_to_download if self.dataset_to_download is None and self.task_in_dataset is None: # If neither are provided, default both to '*' self.dataset_to_download = '*' self.task_in_dataset = '*' elif self.dataset_to_download is None and self.task_in_dataset is not None: # If task_in_dataset is provided but dataset_to_download is not, raise an error raise AssertionError("Dataset needs to be defined for the task_in_dataset provided.") elif self.dataset_to_download is not None and self.task_in_dataset is None: # If dataset_to_download is provided but task_in_dataset is not, default task_in_dataset to '*' self.task_in_dataset = '*' super().__init__(**kwargs) class PathoBenchDataset(datasets.GeneratorBasedBuilder): """ Downloads only the .tsv and .yaml files needed to construct the dataset. Excludes .png images so they don't break the builder. """ BUILDER_CONFIGS = [ PathoBenchConfig(name="custom_config", version="1.0.0", description="PathoBench config") ] BUILDER_CONFIG_CLASS = PathoBenchConfig def _info(self): return datasets.DatasetInfo( description="PathoBench: collection of canonical computational pathology tasks", homepage="https://github.com/mahmoodlab/patho-bench", license="CC BY-NC-SA 4.0 Deed", features=Features({ 'path': Value('string') }) ) def _split_generators(self, dl_manager): repo_id = "MahmoodLab/patho-bench" dataset_to_download = self.config.dataset_to_download local_dir = self._cache_dir_root force_download = self.config.force_download task_in_dataset = self.config.task_in_dataset # Ensure the base local directory exists os.makedirs(local_dir, exist_ok=True) # 1) Download the top-level available_splits.yaml snapshot_download( repo_id=repo_id, allow_patterns=["available_splits.yaml"], # only this file repo_type="dataset", local_dir=local_dir, force_download=force_download, ) # Read available splits with open(os.path.join(local_dir, "available_splits.yaml"), 'r') as file: available_splits = yaml.safe_load(file) # Basic validation if dataset_to_download != "*": assert dataset_to_download in available_splits, ( f"{dataset_to_download} was not found. " f"Available splits: {list(available_splits.keys())}" ) if task_in_dataset != "*": assert task_in_dataset in available_splits[dataset_to_download], ( f"{task_in_dataset} was not found in {dataset_to_download}. " f"Available tasks: {available_splits[dataset_to_download]}" ) # 2) Decide what to allow based on dataset/task # # We only want .tsv and the relevant .yaml files (like about.yaml, config.yaml). # That way, we skip .png images which can cause issues or be large in LFS. if dataset_to_download == "*": # Download every dataset subfolder's .tsv and about.yaml/config.yaml allow_patterns = [ "**/*.tsv", # All tsv splits "**/about.yaml", # The about files "**/config.yaml", # The config files "available_splits.yaml" # Already downloaded, but no harm ] else: if task_in_dataset == "*": allow_patterns = [ f"{dataset_to_download}/**/*.tsv", f"{dataset_to_download}/**/about.yaml", f"{dataset_to_download}/**/config.yaml", "available_splits.yaml" ] else: allow_patterns = [ f"{dataset_to_download}/{task_in_dataset}/*.tsv", f"{dataset_to_download}/{task_in_dataset}/config.yaml", f"{dataset_to_download}/about.yaml", "available_splits.yaml" ] # 3) Download the requested patterns snapshot_download( repo_id=repo_id, allow_patterns=allow_patterns, repo_type="dataset", local_dir=local_dir, force_download=force_download, ) # 4) Locate all .tsv files to pass to _generate_examples search_pattern = os.path.join(local_dir, '**', '*.tsv') all_tsv_splits = glob.glob(search_pattern, recursive=True) return [ datasets.SplitGenerator( name="full", gen_kwargs={"filepath": all_tsv_splits}, ) ] def _generate_examples(self, filepath): idx = 0 for file in filepath: yield idx, { 'path': file } idx += 1