Create extras/thumbnail_dem.py
Browse files- extras/thumbnail_dem.py +77 -0
extras/thumbnail_dem.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
NOTE: Major TOM standard does not require any specific type of thumbnail to be computed.
|
| 3 |
+
|
| 4 |
+
Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from rasterio.io import MemoryFile
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import rasterio as rio
|
| 13 |
+
from matplotlib.colors import LightSource
|
| 14 |
+
|
| 15 |
+
def get_grayscale(x):
|
| 16 |
+
"""
|
| 17 |
+
Normalized grayscale visualisation
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
# normalize
|
| 21 |
+
x_n = x-x.min()
|
| 22 |
+
x_n = x_n/x_n.max()
|
| 23 |
+
|
| 24 |
+
return np.uint8(x_n*255)
|
| 25 |
+
|
| 26 |
+
def get_hillshade(x, azdeg=315, altdeg=45,ve=1):
|
| 27 |
+
"""
|
| 28 |
+
Hillshade visualisation for DEM
|
| 29 |
+
"""
|
| 30 |
+
ls = LightSource(azdeg=azdeg, altdeg=altdeg)
|
| 31 |
+
|
| 32 |
+
return np.uint8(255*ls.hillshade(x, vert_exag=ve))
|
| 33 |
+
|
| 34 |
+
def dem_thumbnail(dem, dem_NODATA = -32768.0, hillshade=True):
|
| 35 |
+
"""
|
| 36 |
+
Takes vv and vh numpy arrays along with the corresponding NODATA values (default is -32768.0)
|
| 37 |
+
|
| 38 |
+
Returns a numpy array with the thumbnail
|
| 39 |
+
"""
|
| 40 |
+
if hillshade:
|
| 41 |
+
return get_hillshade(dem)
|
| 42 |
+
else:
|
| 43 |
+
return get_grayscale(dem)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def dem_thumbnail_from_datarow(datarow):
|
| 47 |
+
"""
|
| 48 |
+
Takes a datarow directly from one of the data parquet files
|
| 49 |
+
|
| 50 |
+
Returns a PIL Image
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
with MemoryFile(datarow['DEM'][0].as_py()) as mem_f:
|
| 54 |
+
with mem_f.open(driver='GTiff') as f:
|
| 55 |
+
dem=f.read().squeeze()
|
| 56 |
+
dem_NODATA = f.nodata
|
| 57 |
+
|
| 58 |
+
img = dem_thumbnail(dem, dem_NODATA)
|
| 59 |
+
|
| 60 |
+
return Image.fromarray(img,'L')
|
| 61 |
+
|
| 62 |
+
if __name__ == '__main__':
|
| 63 |
+
from fsspec.parquet import open_parquet_file
|
| 64 |
+
import pyarrow.parquet as pq
|
| 65 |
+
|
| 66 |
+
print('[example run] reading file from HuggingFace...')
|
| 67 |
+
url = "https://huggingface.co/datasets/Major-TOM/Core-DEM/resolve/main/images/part_01001.parquet"
|
| 68 |
+
with open_parquet_file(url) as f:
|
| 69 |
+
with pq.ParquetFile(f) as pf:
|
| 70 |
+
first_row_group = pf.read_row_group(1)
|
| 71 |
+
|
| 72 |
+
print('[example run] computing the thumbnail...')
|
| 73 |
+
thumbnail = dem_thumbnail_from_datarow(first_row_group)
|
| 74 |
+
|
| 75 |
+
thumbnail_fname = 'example_thumbnail.png'
|
| 76 |
+
thumbnail.save(thumbnail_fname, format = 'PNG')
|
| 77 |
+
print('[example run] saved as "{}"'.format(thumbnail_fname))
|