File size: 7,392 Bytes
da3b8d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

# Generate_sudokuCSV_V2.1.py
#
# Description:
# This script generates a high-quality, diverse dataset of Sudoku puzzles and their solutions.
#
# Key Logic of V2.1:
# 1.  **Generates Unique Base Solutions:** Uses a randomized backtracking algorithm to
#     create a set of unique solved grids.
# 2.  **Intentionally Creates Symmetries:** For each unique base grid, it generates all 8
#     of its symmetries (rotations and mirrors) and adds them to the dataset.
# 3.  **Removes ONLY Literal Duplicates:** After generating all grids, it performs a
#     deduplication step that ONLY removes grids that are 100% identical, block-for-block.
#     This ensures that rotated and mirrored versions of a grid are KEPT in the final set.
# 4.  **Creates Puzzles:** A unique puzzle with a different pattern of empty cells is
#     created for each final, unique grid.

import numpy as np
import pandas as pd
import random
import sys
import os
from tqdm import tqdm

class SudokuGeneratorV2_1:
    """
    A class to generate a Sudoku dataset that includes symmetric variations
    but removes only literal duplicates.
    """
    def __init__(self, num_base_solutions: int, difficulty: float):
        if not (0.1 <= difficulty <= 0.99):
            raise ValueError("Difficulty must be between 0.1 and 0.99")
            
        self.num_base_solutions = num_base_solutions
        self.difficulty = difficulty

    def _find_empty(self, grid):
        """Finds the next empty cell (value 0) in the grid."""
        for i in range(9):
            for j in range(9):
                if grid[i, j] == 0:
                    return (i, j)
        return None

    def _is_valid(self, grid, pos, num):
        """Checks if placing a number in a position is valid."""
        row, col = pos
        # Check row, column, and 3x3 box
        if num in grid[row, :] or num in grid[:, col]:
            return False
        box_x, box_y = col // 3, row // 3
        if num in grid[box_y*3:box_y*3+3, box_x*3:box_x*3+3]:
            return False
        return True

    def _backtrack_solve(self, grid):
        """A randomized backtracking solver to generate a filled grid."""
        find = self._find_empty(grid)
        if not find:
            return True
        else:
            row, col = find

        nums = list(range(1, 10))
        random.shuffle(nums)
        for num in nums:
            if self._is_valid(grid, (row, col), num):
                grid[row, col] = num
                if self._backtrack_solve(grid):
                    return True
                grid[row, col] = 0
        return False

    def _get_symmetries(self, grid):
        """Generates all 8 symmetries of a grid (4 rotations and their mirrors)."""
        symmetries = []
        current_grid = grid.copy()
        for _ in range(4):
            symmetries.append(current_grid)
            symmetries.append(np.flipud(current_grid)) # Horizontal mirror
            current_grid = np.rot90(current_grid)
        return symmetries

    def _create_puzzle_from_solution(self, solution_grid):
        """Removes a percentage of cells from a solved grid to create a puzzle."""
        puzzle = solution_grid.copy().flatten()
        num_to_remove = int(81 * self.difficulty)
        indices = list(range(81))
        random.shuffle(indices)
        puzzle[indices[:num_to_remove]] = 0
        return puzzle.reshape((9, 9))

    def generate_and_save(self, output_path: str):
        """Main orchestrator method."""
        print("--- Sudoku Generator V2.1 ---")
        
        # --- Step 1: Generate unique base solutions ---
        print(f"Generating {self.num_base_solutions} random base solutions...")
        base_solutions = []
        # Use a simple set of strings to avoid generating duplicate bases upfront
        seen_base_strings = set()
        with tqdm(total=self.num_base_solutions, desc="Generating Bases") as pbar:
            while len(base_solutions) < self.num_base_solutions:
                grid = np.zeros((9, 9), dtype=int)
                self._backtrack_solve(grid)
                grid_str = "".join(map(str, grid.flatten()))
                if grid_str not in seen_base_strings:
                    seen_base_strings.add(grid_str)
                    base_solutions.append(grid)
                    pbar.update(1)
        
        # --- Step 2: Expand base solutions with all 8 symmetries ---
        print("Applying all 8 symmetries to each base solution to create the full candidate set...")
        all_candidate_solutions = []
        for grid in tqdm(base_solutions, desc="Applying Symmetries"):
            all_candidate_solutions.extend(self._get_symmetries(grid))
        print(f"Generated {len(all_candidate_solutions)} total solutions (including potential literal duplicates).")

        # --- Step 3: Deduplicate ONLY literal, block-for-block duplicates ---
        print("Removing literal duplicates, keeping all rotations and mirrors...")
        final_solutions = []
        seen_literal_strings = set()
        
        grid_to_string = lambda g: "".join(map(str, g.flatten()))

        for grid in tqdm(all_candidate_solutions, desc="Deduplicating Literals"):
            grid_str = grid_to_string(grid)
            if grid_str not in seen_literal_strings:
                seen_literal_strings.add(grid_str)
                final_solutions.append(grid)
        
        print(f"Found {len(final_solutions)} unique grids after removing literal duplicates.")
        print(f"({len(all_candidate_solutions) - len(final_solutions)} literal duplicates were removed).")

        # --- Step 4: Create a puzzle for each unique solution ---
        print(f"Creating a puzzle for each of the {len(final_solutions)} final grids...")
        puzzles_and_solutions = []
        for solution_grid in tqdm(final_solutions, desc="Creating Puzzles"):
            puzzle_grid = self._create_puzzle_from_solution(solution_grid)
            puzzles_and_solutions.append({
                'quizzes': grid_to_string(puzzle_grid),
                'solutions': grid_to_string(solution_grid)
            })

        # --- Step 5: Save to CSV ---
        print(f"\nSaving {len(puzzles_and_solutions)} puzzles to '{output_path}'...")
        df = pd.DataFrame(puzzles_and_solutions)
        # Shuffle the final dataset so symmetric puzzles aren't clumped together
        df = df.sample(frac=1).reset_index(drop=True)
        df.to_csv(output_path, index=False)
        
        print("\n--- Generation Complete ---")
        print(f"Final dataset contains {len(df)} puzzles.")


if __name__ == '__main__':
    # --- Configuration ---
    
    # Number of unique base solutions to generate before applying symmetries.
    # The final dataset size will be approximately this number * 8.
    NUM_BASE_SOLUTIONS = 200
    
    # The fraction of cells to be empty in the puzzle.
    DIFFICULTY = 0.7
    
    # The output file name.
    OUTPUT_FILE = 'sudoku.csv'

    # --- Execution ---
    if os.path.exists(OUTPUT_FILE):
        overwrite = input(f"WARNING: '{OUTPUT_FILE}' already exists. Overwrite? (y/n): ").lower()
        if overwrite != 'y':
            print("Generation cancelled by user.")
            sys.exit(0)
            
    generator = SudokuGeneratorV2_1(
        num_base_solutions=NUM_BASE_SOLUTIONS,
        difficulty=DIFFICULTY
    )
    generator.generate_and_save(OUTPUT_FILE)