Maxim37 commited on
Commit
fd7a5b8
·
verified ·
1 Parent(s): 4e865aa

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -40
README.md CHANGED
@@ -1,42 +1,74 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image_id
5
- dtype: string
6
- - name: image
7
- dtype: image
8
- - name: width
9
- dtype: int64
10
- - name: height
11
- dtype: int64
12
- - name: objects
13
- list:
14
- - name: class
15
- dtype: int64
16
- - name: class_name
17
- dtype: string
18
- - name: height
19
- dtype: float64
20
- - name: width
21
- dtype: float64
22
- - name: x_min
23
- dtype: float64
24
- - name: y_min
25
- dtype: float64
26
- splits:
27
- - name: train
28
- num_bytes: 107167107.0
29
- num_examples: 821
30
- - name: val
31
- num_bytes: 34389463.0
32
- num_examples: 206
33
- download_size: 139667096
34
- dataset_size: 141556570.0
35
- configs:
36
- - config_name: default
37
- data_files:
38
- - split: train
39
- path: data/train-*
40
- - split: val
41
- path: data/val-*
42
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - en
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - cc-by-nc-3.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: DAWN Dataset
13
+ size_categories:
14
+ - 1K<n<10K
15
+ source_datasets:
16
+ - original
17
+ tags:
18
+ - object-detection
19
+ - computer-vision
20
+ - autonomous-driving
21
+ - adverse-weather
22
+ - traffic
23
+ task_categories:
24
+ - object-detection
25
+ task_ids:
26
+ - object-detection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ---
28
+
29
+ # Dawn Dataset
30
+
31
+ This dataset contains images with annotations for object detection in the YOLO format, converted to absolute coordinates for easier use. The dataset is focused on detecting vehicles and people in various environments.
32
+
33
+ ## Dataset Source
34
+
35
+ This dataset is based on the DAWN (Detection in Adverse Weather Nature) dataset, which was originally published by Mourad KENK on Mendeley Data:
36
+ - **Original Source**: [DAWN Dataset on Mendeley](https://data.mendeley.com/datasets/766ygrbt8y/3)
37
+
38
+ The original DAWN dataset consists of real-world images collected under various adverse weather conditions (fog, snow, rain, and sandstorms). It emphasizes diverse traffic environments (urban, highway, and freeway) and provides a rich variety of traffic flow scenarios specifically for autonomous driving and video surveillance applications.
39
+
40
+
41
+ ## Dataset Structure
42
+
43
+ The dataset is split into training and validation sets and contains annotations for the following 6 classes:
44
+ - Truck (class_id: 0)
45
+ - Person (class_id: 1)
46
+ - Bicycle (class_id: 2)
47
+ - Car (class_id: 3)
48
+ - Motorcycle (class_id: 4)
49
+ - Bus (class_id: 5)
50
+
51
+ ## Dataset Format
52
+
53
+ Each example in the dataset includes:
54
+
55
+ - `image`: The actual image data (PIL.Image format when loaded)
56
+ - `width`: Original image width in pixels
57
+ - `height`: Original image height in pixels
58
+ - `objects`: A list of detected objects in the image with the following properties for each:
59
+ - `class`: The numerical class ID (0-5)
60
+ - `class_name`: The text name of the class (Truck, Person, etc.)
61
+ - `x_min`: The x-coordinate of the top-left corner of the bounding box (in pixels)
62
+ - `y_min`: The y-coordinate of the top-left corner of the bounding box (in pixels)
63
+ - `width`: The width of the bounding box (in pixels)
64
+ - `height`: The height of the bounding box (in pixels)
65
+
66
+ ### Coordinate System
67
+
68
+ Note that the original YOLO format uses normalized coordinates (relative to image size) with center points:
69
+ - `x_center, y_center`: Normalized center point (0-1)
70
+ - `width, height`: Normalized dimensions (0-1)
71
+
72
+ This dataset converts these to absolute pixel coordinates with top-left origin:
73
+ - `x_min, y_min`: Top-left corner in pixels
74
+ - `width, height`: Dimensions in pixels