Meehai commited on
Commit
309d5c2
·
1 Parent(s): c558d76

README updates

Browse files
Files changed (1) hide show
  1. README.md +3 -333
README.md CHANGED
@@ -1,339 +1,9 @@
1
- # Dronescapes dataset
2
 
3
- As introduced in our ICCV 2023 workshop paper: [link](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf)
4
 
5
  ![Logo](logo.png)
6
 
7
- # 1. Downloading the data
8
 
9
- ## Option 1. Download the pre-processed dataset from HuggingFace repository
10
-
11
- ```
12
- git lfs install # Make sure you have git-lfs installed (https://git-lfs.com)
13
- git clone https://huggingface.co/datasets/Meehai/dronescapes
14
- ```
15
-
16
- Note: the dataset has about 500GB, so it may take a while to clone it.
17
-
18
- <details>
19
- <summary> <b> Option 2. Generating the dataset from raw videos and basic labels </b>.</summary>
20
-
21
- Recommended if you intend on understanding how the dataset was created or add new videos or representations.
22
-
23
- ### 1.2.1 Raw videos
24
-
25
- Follow the commands in each directory under `raw_data/videos/*/commands.txt` if you want to start from the 4K videos.
26
-
27
- If you only want the 540p videos as used in the paper, they are already provided in the `raw_data/videos/*` directories.
28
-
29
- ### 1.2.2 Semantic segmentation labels (human annotated)
30
-
31
- These were human annotated and then propagated using [segprop](https://github.com/vlicaret/segprop).
32
-
33
- ```bash
34
- cd raw_data/
35
- tar -xzvf segprop_npz_540.tar.gz
36
- ```
37
-
38
- ### 1.2.3 Generate the rest of the representations
39
-
40
- We use the [video-representations-extractor](https://gitlab.com/meehai/video-representations-extractor) to generate
41
- the rest of the labels using pre-traing networks or algoritms.
42
-
43
- Install it via `pip install video-representations-extractor` (or follow the README over there for docker or local env)
44
-
45
- ```
46
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/atanasie_DJI_0652_full/atanasie_DJI_0652_full_540p.mp4 -o raw_data/npz_540p/atanasie_DJI_0652_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
47
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/barsana_DJI_0500_0501_combined_sliced_2700_14700/barsana_DJI_0500_0501_combined_sliced_2700_14700_540p.mp4 -o raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
48
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre raw_data/videos/comana_DJI_0881_full/comana_DJI_0881_full_540p.mp4 -o raw_data/npz_540p/comana_DJI_0881_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
49
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=3 vre raw_data/videos/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110_540p.mp4 -o raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
50
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=4 vre raw_data/videos/herculane_DJI_0021_full/herculane_DJI_0021_full_540p.mp4 -o raw_data/npz_540p/herculane_DJI_0021_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
51
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=5 vre raw_data/videos/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715_540p.mp4 -o raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
52
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=6 vre raw_data/videos/norway_210821_DJI_0015_full/norway_210821_DJI_0015_full_540p.mp4 -o raw_data/npz_540p/norway_210821_DJI_0015_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
53
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre raw_data/videos/olanesti_DJI_0416_full/olanesti_DJI_0416_full_540p.mp4 -o raw_data/npz_540p/olanesti_DJI_0416_full/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
54
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=0 vre raw_data/videos/petrova_DJI_0525_0526_combined_sliced_2850_11850/petrova_DJI_0525_0526_combined_sliced_2850_11850_540p.mp4 -o raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
55
- VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre raw_data/videos/slanic_DJI_0956_0957_combined_sliced_780_9780/slanic_DJI_0956_0957_combined_sliced_780_9780_540p.mp4 -o raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/ --cfg_path scripts/cfg.yaml --batch_size 3 --n_threads_data_storer 4 --output_dir_exist_mode overwrite
56
- ```
57
-
58
- Note: `depth_sfm`, `normals_sfm` and `depth_ufo` are not available in VRE. Contact us for more info about them.
59
-
60
- Note: Add `--representations "rgb" "opticalflow_rife" "depth_dpt" "edges_dexined" "semantic_mask2former_swin_mapillary" "softseg_gb"` to control if you only want a subset of the representations.
61
-
62
- Note: Some batch sizes are overwritten in the config itself.
63
-
64
- ### 1.2.4 Convert Mask2Former from Mapillary classes to segprop8 classes
65
-
66
- Since we are using pre-trained Mask2Former which has either mapillary or COCO panoptic classes, we need to convert them to dronescapes-compatible (8) classes.
67
-
68
- To do this, we use the `scripts/convert_m2f_to_dronescapes.py` script:
69
- ```
70
- python scripts/convert_m2f_to_dronescapes.py in_dir out_dir mapillary/coco [--overwrite]
71
- ```
72
-
73
- ```
74
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/atanasie_DJI_0652_full/semantic_mask2former_swin_mapillary_converted mapillary
75
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary raw_data/npz_540p/barsana_DJI_0500_0501_combined_sliced_2700_14700/semantic_mask2former_swin_mapillary_converted mapillary
76
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/comana_DJI_0881_full/semantic_mask2former_swin_mapillary_converted mapillary
77
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary raw_data/npz_540p/gradistei_DJI_0787_0788_0789_combined_sliced_3510_13110/semantic_mask2former_swin_mapillary_converted mapillary
78
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/herculane_DJI_0021_full/semantic_mask2former_swin_mapillary_converted mapillary
79
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary raw_data/npz_540p/jupiter_DJI_0703_0704_0705_combined_sliced_10650_21715/semantic_mask2former_swin_mapillary_converted mapillary
80
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/norway_210821_DJI_0015_full/semantic_mask2former_swin_mapillary_converted mapillary
81
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary raw_data/npz_540p/olanesti_DJI_0416_full/semantic_mask2former_swin_mapillary_converted mapillary
82
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary raw_data/npz_540p/petrova_DJI_0525_0526_combined_sliced_2850_11850/semantic_mask2former_swin_mapillary_converted mapillary
83
- python scripts/convert_m2f_to_dronescapes.py raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary raw_data/npz_540p/slanic_DJI_0956_0957_combined_sliced_780_9780/semantic_mask2former_swin_mapillary_converted mapillary
84
- ```
85
-
86
- ### 1.2.5 Check counts for consistency
87
-
88
- Run: `bash scripts/count_npz.sh raw_data/npz_540p`. At this point it should return:
89
- | scene | rgb | depth_dpt | depth_sfm_manual20.. | edges_dexined | normals_sfm_manual.. | opticalflow_rife | semantic_mask2form.. | semantic_segprop8 |
90
- |:----------|------:|------------:|-----------------------:|----------------:|-----------------------:|-------------------:|-----------------------:|--------------------:|
91
- | atanasie | 9021 | 9021 | 9020 | 9021 | 9020 | 9021 | 9021 | 9001 |
92
- | barsana | 12001 | 12001 | 12001 | 12001 | 12001 | 12000 | 12001 | 1573 |
93
- | comana | 9022 | 9022 | 0 | 9022 | 0 | 9022 | 9022 | 1210 |
94
- | gradistei | 9601 | 9601 | 9600 | 9601 | 9600 | 9600 | 9601 | 1210 |
95
- | herculane | 9022 | 9022 | 9021 | 9022 | 9021 | 9022 | 9022 | 1210 |
96
- | jupiter | 11066 | 11066 | 11065 | 11066 | 11065 | 11066 | 11066 | 1452 |
97
- | norway | 2983 | 2983 | 0 | 2983 | 0 | 2983 | 2983 | 2941 |
98
- | olanesti | 9022 | 9022 | 9021 | 9022 | 9021 | 9022 | 9022 | 1210 |
99
- | petrova | 9001 | 9001 | 9001 | 9001 | 9001 | 9000 | 9001 | 1210 |
100
- | slanic | 9001 | 9001 | 9001 | 9001 | 9001 | 9000 | 9001 | 9001 |
101
-
102
- ### 1.2.6. Split intro train, validation, semisupervised and train
103
-
104
- We include 8 splits: 4 using only GT annotated semantic data and 4 using all available data (i.e. segproped between
105
- annotated data). The indexes are taken from `txt_files/*`, i.e. `txt_files/manually_adnotated_files/test_files_116.txt`
106
- refers to the fact that the (unseen at train time) test set (norway + petrova + barsana) contains 116 manually
107
- annotated semantic files. We include all representations from above, not just semantic for all possible splits.
108
- Adding new representations is as simple as running VRE on the 540p mp4 file
109
-
110
- ```
111
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/train_files_11664.txt -o data/train_set --overwrite
112
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/val_files_605.txt -o data/validation_set --overwrite
113
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/semisup_files_11299.txt -o data/semisupervised_set --overwrite
114
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/annotated_and_segprop/test_files_5603.txt -o data/test_set --overwrite
115
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/train_files_218.txt -o data/train_set_annotated_only --overwrite
116
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/val_files_15.txt -o data/validation_set_annotated_only --overwrite
117
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/semisup_files_207.txt -o data/semisupervised_set_annotated_nly --overwrite
118
- python scripts/symlinks_from_txt_list.py raw_data/npz_540p/ --txt_file txt_files/manually_annotated_files/test_files_116.txt -o data/test_set_annotated_only --overwrite
119
- ```
120
-
121
- Note: `add --copy_files` if you want to make copies instead of using symlinks.
122
-
123
- Upon calling this, you should be able to see something like this:
124
- ```
125
- user> ls data/*
126
- data/semisupervised_set:
127
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
128
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
129
-
130
- data/semisupervised_set_annotated_nly:
131
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
132
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
133
-
134
- data/test_set:
135
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
136
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
137
-
138
- data/test_set_annotated_nly:
139
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
140
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
141
-
142
- data/train_set:
143
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
144
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
145
-
146
- data/train_set_annotated_only:
147
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
148
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
149
-
150
- data/validation_set:
151
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
152
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
153
-
154
- data/validation_set_annotated_only:
155
- depth_dpt edges_dexined opticalflow_rife semantic_mask2former_swin_mapillary_converted
156
- depth_sfm_manual202204 normals_sfm_manual202204 rgb semantic_segprop8
157
- ```
158
-
159
- ### 1.2.7 Convert Camera Normals to World Normals
160
-
161
- This is an optional step, but for some use cases, it may be better to use world normals instead of camera normals, which
162
- are provided by default in `normals_sfm_manual202204`. To convert, we provide camera rotation matrices in
163
- `raw_data/camera_matrics.tar.gz` for all 8 scenes that also have SfM.
164
-
165
- In order to convert, use this function (for each npz file):
166
-
167
- ```
168
- def convert_camera_to_world(normals: np.ndarray, rotation_matrix: np.ndarray) -> np.ndarray:
169
- normals = (normals.copy() - 0.5) * 2 # [-1:1] -> [0:1]
170
- camera_normals = camera_normals @ np.linalg.inv(rotation_matrix)
171
- camera_normals = (camera_normals / 2) + 0.5 # [0:1] => [-1:1]
172
- return np.clip(camera_normals, 0.0, 1.0)
173
- ```
174
-
175
- </details>
176
-
177
- ## 2. Using the data
178
-
179
- As per the split from the paper:
180
-
181
- <details>
182
- <summary> Split </summary>
183
- <img src="split.png">
184
- </details>
185
-
186
- The data is in `data/*` (see the `ls` call above, it should match even if you download from huggingface).
187
-
188
- ## 2.1 Using the provided viewer
189
-
190
- ![Collage](collage.png)
191
-
192
- The simplest way to explore the data is to use the [provided notebook](scripts/dronescapes_viewer.ipynb). Upon running
193
- it, you should get a collage with all the default tasks, like the picture at the top.
194
-
195
- For a CLI-only method, you can use the provided reader as well:
196
-
197
- ```
198
- python scripts/dronescapes_viewer.py data/test_set_annotated_only/ # or any of the 8 directories in data/
199
- ```
200
-
201
- <details>
202
- <summary> Expected output </summary>
203
-
204
- ```
205
- [MultiTaskDataset]
206
- - Path: '/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/data/test_set_annotated_only'
207
- - Tasks (11): [DepthRepresentation(depth_dpt), DepthRepresentation(depth_sfm_manual202204), DepthRepresentation(depth_ufo), ColorRepresentation(edges_dexined), EdgesRepresentation(edges_gb), NpzRepresentation(normals_sfm_manual202204), OpticalFlowRepresentation(opticalflow_rife), ColorRepresentation(rgb), SemanticRepresentation(semantic_mask2former_swin_mapillary_converted), SemanticRepresentation(semantic_segprop8), ColorRepresentation(softseg_gb)]
208
- - Length: 116
209
- - Handle missing data mode: 'fill_none'
210
- == Shapes ==
211
- {'depth_dpt': torch.Size([540, 960]),
212
- 'depth_sfm_manual202204': torch.Size([540, 960]),
213
- 'depth_ufo': torch.Size([540, 960, 1]),
214
- 'edges_dexined': torch.Size([540, 960]),
215
- 'edges_gb': torch.Size([540, 960, 1]),
216
- 'normals_sfm_manual202204': torch.Size([540, 960, 3]),
217
- 'opticalflow_rife': torch.Size([540, 960, 2]),
218
- 'rgb': torch.Size([540, 960, 3]),
219
- 'semantic_mask2former_swin_mapillary_converted': torch.Size([540, 960, 8]),
220
- 'semantic_segprop8': torch.Size([540, 960, 8]),
221
- 'softseg_gb': torch.Size([540, 960, 3])}
222
- == Random loaded item ==
223
- {'depth_dpt': tensor[540, 960] n=518400 (2.0Mb) x∈[0.043, 1.000] μ=0.341 σ=0.418,
224
- 'depth_sfm_manual202204': None,
225
- 'depth_ufo': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0.115, 0.588] μ=0.297 σ=0.138,
226
- 'edges_dexined': tensor[540, 960] n=518400 (2.0Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
227
- 'edges_gb': tensor[540, 960, 1] n=518400 (2.0Mb) x∈[0., 1.000] μ=0.063 σ=0.100,
228
- 'normals_sfm_manual202204': None,
229
- 'opticalflow_rife': tensor[540, 960, 2] n=1036800 (4.0Mb) x∈[-0.004, 0.005] μ=0.000 σ=0.000,
230
- 'rgb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 1.000] μ=0.392 σ=0.238,
231
- 'semantic_mask2former_swin_mapillary_converted': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
232
- 'semantic_segprop8': tensor[540, 960, 8] n=4147200 (16Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
233
- 'softseg_gb': tensor[540, 960, 3] n=1555200 (5.9Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
234
- == Random loaded batch ==
235
- {'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.043, 1.000] μ=0.340 σ=0.417,
236
- 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) NaN!,
237
- 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.115, 0.588] μ=0.296 σ=0.137,
238
- 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
239
- 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.063 σ=0.102,
240
- 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) NaN!,
241
- 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.004, 0.006] μ=0.000 σ=0.000,
242
- 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.393 σ=0.238,
243
- 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
244
- 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
245
- 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
246
- == Random loaded batch using torch DataLoader ==
247
- {'depth_dpt': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.025, 1.000] μ=0.216 σ=0.343,
248
- 'depth_sfm_manual202204': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.562 σ=0.335 NaN!,
249
- 'depth_ufo': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0.100, 0.580] μ=0.290 σ=0.128,
250
- 'edges_dexined': tensor[5, 540, 960] n=2592000 (9.9Mb) x∈[0.000, 0.004] μ=0.003 σ=0.001,
251
- 'edges_gb': tensor[5, 540, 960, 1] n=2592000 (9.9Mb) x∈[0., 1.000] μ=0.079 σ=0.116,
252
- 'normals_sfm_manual202204': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0.000, 1.000] μ=0.552 σ=0.253 NaN!,
253
- 'opticalflow_rife': tensor[5, 540, 960, 2] n=5184000 (20Mb) x∈[-0.013, 0.016] μ=0.000 σ=0.004,
254
- 'rgb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 1.000] μ=0.338 σ=0.237,
255
- 'semantic_mask2former_swin_mapillary_converted': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
256
- 'semantic_segprop8': tensor[5, 540, 960, 8] n=20736000 (79Mb) x∈[0., 1.000] μ=0.125 σ=0.331,
257
- 'softseg_gb': tensor[5, 540, 960, 3] n=7776000 (30Mb) x∈[0., 0.004] μ=0.002 σ=0.001}
258
- ```
259
- </details>
260
-
261
- ## 3. Evaluation for semantic segmentation
262
-
263
- We evaluate in the paper on the 3 test scenes (unsees at train) as well as the semi-supervised scenes (seen, but
264
- different split) against the human annotated frames. The general evaluation script is in
265
- `scripts/evaluate_semantic_segmentation.py`.
266
-
267
- General usage is:
268
- ```
269
- python scripts/evaluate_semantic_segmentation.py y_dir gt_dir -o results.csv --classes C1 C2 .. Cn
270
- [--class_weights W1 W2 ... Wn] [--scenes s1 s2 ... sm]
271
- ```
272
-
273
- <details>
274
- <summary> Script explanation </summary>
275
- The script is a bit convoluted, so let's break it into parts:
276
-
277
- - `y_dir` and `gt_dir` Two directories of .npz files in the same format as the dataset (y_dir/1.npz, gt_dir/55.npz etc.)
278
- - `classes` A list of classes in the order that they appear in the predictions and gt files
279
- - `class_weights` (optional, but used in paper) How much to weigh each class. In the paper we compute these weights as
280
- the number of pixels in all the dataset (train/val/semisup/test) for each of the 8 classes resulting in the numbers
281
- below.
282
- - `scenes` if the `y_dir` and `gt_dir` contains multiple scenes that you want to evaluate separately, the script allows
283
- you to pass the prefix of all the scenes. For example, in `data/test_set_annotated_only/semantic_segprop8/` there are
284
- actually 3 scenes in the npz files and in the paper, we evaluate each scene independently. Even though the script
285
- outputs one csv file with predictions for each npz file, the scenes are used for proper aggregation at scene level.
286
- </details>
287
-
288
- <details>
289
- <summary> Reproducing paper results for Mask2Former </summary>
290
-
291
- ```
292
- python scripts/evaluate_semantic_segmentation.py \
293
- data/test_set_annotated_only/semantic_mask2former_swin_mapillary_converted/ \
294
- data/test_set_annotated_only/semantic_segprop8/ \
295
- -o results.csv \
296
- --classes land forest residential road little-objects water sky hill \
297
- --class_weights 0.28172092 0.30589653 0.13341699 0.05937348 0.00474491 0.05987466 0.08660721 0.06836531 \
298
- --scenes barsana_DJI_0500_0501_combined_sliced_2700_14700 comana_DJI_0881_full norway_210821_DJI_0015_full
299
- ```
300
-
301
- Should output:
302
- ```
303
- scene iou f1
304
- barsana_DJI_0500_0501_combined_sliced_2700_14700 63.371 75.338
305
- comana_DJI_0881_full 60.559 73.779
306
- norway_210821_DJI_0015_full 37.986 45.939
307
- mean 53.972 65.019
308
-
309
- ```
310
-
311
- Not providing `--scenes` will make an average across all 3 scenes (not average after each metric individually):
312
-
313
- ```
314
- iou f1
315
- scene
316
- all 60.456 73.261
317
- ```
318
- </details>
319
-
320
- ### 3.1 Official benchmark
321
-
322
- #### IoU
323
-
324
- | method | #paramters | average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full | norway_210821_DJI_0015_full |
325
- |:-|:-|:-|:-|:-|:-|
326
- | [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 53.97 | 63.37 | 60.55 | 37.98 |
327
- | [NGC(LR)](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf) | 32M | 40.75 | 46.51 | 45.59 | 30.17 |
328
- | [CShift](https://www.bmvc2021-virtualconference.com/assets/papers/0455.pdf)[^1] | n/a | 39.67 | 46.27 | 43.67 | 29.09 |
329
- | [NGC](https://cdn.aaai.org/ojs/16283/16283-13-19777-1-2-20210518.pdf)[^1] | 32M | 35.32 | 44.34 | 38.99 | 22.63 |
330
- | [SafeUAV](https://openaccess.thecvf.com/content_ECCVW_2018/papers/11130/Marcu_SafeUAV_Learning_to_estimate_depth_and_safe_landing_areas_for_ECCVW_2018_paper.pdf)[^1] | 1.1M | 32.79 | n/a | n/a | n/a |
331
-
332
- [^1]: reported in the [Dronescapes paper](https://openaccess.thecvf.com/content/ICCV2023W/LIMIT/papers/Marcu_Self-Supervised_Hypergraphs_for_Learning_Multiple_World_Interpretations_ICCVW_2023_paper.pdf).
333
-
334
- #### F1 Score
335
-
336
- | method | #paramters | average | barsana_DJI_0500_0501_combined_sliced_2700_14700 | comana_DJI_0881_full | norway_210821_DJI_0015_full |
337
- |:-|:-|:-|:-|:-|:-|
338
- | [Mask2Former](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) | 216M | 65.01 | 75.33 | 73.77 | 45.93 |
339
 
 
1
+ # Dronescapes 2024 dataset
2
 
3
+ This dataset is an extension of the original [dronescapes dataset](https://huggingface.co/dataset/Meehai/dronescapes) with new modalities generated using VRE 100% from scratch. The only data that is not generable by VRE is the Ground Truth: semantic (human annotated), depth & normals (SfM).
4
 
5
  ![Logo](logo.png)
6
 
7
+ WIP
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9