Meehai commited on
Commit
66dd702
·
1 Parent(s): 207e89c

upgrade to vre 1.9.0

Browse files
scripts/dronescapes_viewer/dronescapes_representations.py CHANGED
@@ -1,19 +1,20 @@
1
  import sys
2
  from pathlib import Path
3
  from vre.representations import Representation
4
- from vre.representations.color import RGB, HSV
5
- from vre.representations.depth import DepthRepresentation
6
- from vre.representations.normals import NormalsRepresentation
7
- from vre.representations.edges import EdgesRepresentation
8
- from vre.representations.optical_flow import OpticalFlowRepresentation
9
- from vre.representations.semantic_segmentation import SemanticRepresentation
 
10
 
11
  def get_gt_tasks() -> dict[str, Representation]:
12
  color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
13
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
14
  classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
15
  tasks = [
16
- SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, semantic_argmax_only=True),
17
  DepthRepresentation("depth_output", min_depth=0, max_depth=300),
18
  NormalsRepresentation("camera_normals_output"),
19
  ]
 
1
  import sys
2
  from pathlib import Path
3
  from vre.representations import Representation
4
+ from vre_repository.color.rgb import RGB
5
+ from vre_repository.color.hsv import HSV
6
+ from vre_repository.depth import DepthRepresentation
7
+ from vre_repository.normals import NormalsRepresentation
8
+ from vre_repository.edges import EdgesRepresentation
9
+ # from vre_repository.optical_flow import OpticalFlowRepresentation
10
+ from vre_repository.semantic_segmentation import SemanticRepresentation
11
 
12
  def get_gt_tasks() -> dict[str, Representation]:
13
  color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
14
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
15
  classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
16
  tasks = [
17
+ SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, disk_data_argmax=True),
18
  DepthRepresentation("depth_output", min_depth=0, max_depth=300),
19
  NormalsRepresentation("camera_normals_output"),
20
  ]
scripts/semantic_mapper/semantic_mapper.py CHANGED
@@ -12,9 +12,10 @@ from vre.utils import (semantic_mapper, colorize_semantic_segmentation, DiskData
12
  from vre.logger import vre_logger as logger
13
  from vre.readers.multitask_dataset import MultiTaskDataset, MultiTaskItem
14
  from vre.representations import TaskMapper, NpIORepresentation, Representation, build_representations_from_cfg
15
- from vre.representations.depth import DepthRepresentation
16
- from vre.representations.normals import NormalsRepresentation
17
- from vre.representations.semantic_segmentation import SemanticRepresentation
 
18
 
19
  def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
20
  name_to_task: dict[str, Representation]) -> np.ndarray:
@@ -97,11 +98,11 @@ mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 1
97
  [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
98
 
99
  m2f_coco = SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes,
100
- color_map=coco_color_map, semantic_argmax_only=True)
101
  m2f_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
102
- color_map=mapillary_color_map, semantic_argmax_only=True)
103
  m2f_r50_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_1", classes=mapillary_classes,
104
- color_map=mapillary_color_map, semantic_argmax_only=True)
105
  marigold = DepthRepresentation("depth_marigold", min_depth=0, max_depth=1)
106
  normals_svd_marigold = NormalsRepresentation("normals_svd(depth_marigold)")
107
 
@@ -145,8 +146,7 @@ class SemanticMask2FormerMapillaryConvertedPaper(TaskMapper, NpIORepresentation)
145
 
146
  @overrides
147
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
148
- m2f_mapillary = self.dependencies[0].to_argmaxed_representation(dep_data[0])
149
- m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
150
  return self.disk_to_memory_fmt(m2f_mapillary_converted)
151
 
152
  @overrides
@@ -204,8 +204,7 @@ class SemanticMask2FormerCOCOConverted(TaskMapper, NpIORepresentation):
204
 
205
  @overrides
206
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
207
- m2f_mapillary = self.dependencies[0].to_argmaxed_representation(dep_data[0])
208
- m2f_mapillary_converted = semantic_mapper(m2f_mapillary, self.mapping, self.original_classes)
209
  res = self.disk_to_memory_fmt(m2f_mapillary_converted)
210
  return res
211
 
@@ -258,10 +257,7 @@ class BinaryMapper(TaskMapper, NpIORepresentation):
258
 
259
  @overrides
260
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
261
- dep_data_argmaxed = []
262
- for dep, data in zip(self.dependencies, dep_data):
263
- assert isinstance(dep, SemanticRepresentation), type(dep)
264
- dep_data_argmaxed.append(dep.to_argmaxed_representation(data))
265
  dep_data_converted = [semantic_mapper(x, mapping, oc)
266
  for x, mapping, oc in zip(dep_data_argmaxed, self.mapping, self.original_classes)]
267
 
@@ -304,13 +300,9 @@ class SemanticMedian(TaskMapper, NpIORepresentation):
304
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
305
  return MemoryData(np.eye(self.n_classes)[sum(dep_data).argmax(-1)].astype(np.uint8))
306
 
307
- @overrides
308
- def memory_to_disk_fmt(self, memory_data: MemoryData) -> DiskData:
309
- return memory_data.argmax(-1).astype(np.uint8)
310
-
311
  @overrides
312
  def make_images(self, data: ReprOut) -> np.ndarray:
313
- data_output = data.output.argmax(-1)# if np.issubdtype(data.output.dtype, np.floating) else data.output
314
  return colorize_semantic_segmentation(data_output, self.classes, self.color_map)
315
 
316
  class SafeLandingAreas(BinaryMapper, NpIORepresentation):
@@ -355,12 +347,9 @@ class SafeLandingAreas(BinaryMapper, NpIORepresentation):
355
  v1, v2, v3 = normals.transpose(2, 0, 1)
356
  where_safe = (v2 > 0.8) * ((v1 + v3) < 1.2) * (depth <= 0.9)
357
  if self.include_semantics:
358
- mapi1 = self.dependencies[2].to_argmaxed_representation(dep_data[2])
359
- coco = self.dependencies[3].to_argmaxed_representation(dep_data[3])
360
- mapi2 = self.dependencies[4].to_argmaxed_representation(dep_data[4])
361
- conv1 = np.isin(mapi1, self.safe_mapillary_ix).astype(int)
362
- conv2 = np.isin(coco, self.safe_coco_ix).astype(int)
363
- conv3 = np.isin(mapi2, self.safe_mapillary_ix).astype(int)
364
  sema_safe = (conv1 + conv2 + conv3) >= 2
365
  where_safe = sema_safe * where_safe
366
  return self.disk_to_memory_fmt(where_safe)
@@ -500,22 +489,20 @@ def get_new_semantic_mapped_tasks(tasks_subset: list[str] | None = None) -> dict
500
  return {t.name: t for t in available_tasks if t.name in tasks_subset}
501
 
502
  if __name__ == "__main__":
503
- cfg_path = Path.cwd() / "../../vre_dronescapes/cfg.yaml"
504
- data_path = Path.cwd() / "../../vre_dronescapes/norway_210821_DJI_0015_full/"
505
  vre_dir = data_path
506
 
507
  task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)",
508
- "semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0",
509
- "semantic_mask2former_mapillary_49189528_1"]
510
  order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
511
  "depth_marigold", "normals_svd(depth_marigold)"]
512
 
513
- task_types = {r.name: r for r in build_representations_from_cfg(cfg_path) if r.name in task_names}
514
- statistics = np.load(Path.cwd() / "../../data/train_set/.task_statistics.npz", allow_pickle=True)["arr_0"].item()
515
- # breakpoint()
516
  reader = MultiTaskDataset(vre_dir, task_names=task_names, task_types=task_types,
517
- handle_missing_data="fill_nan", normalization="min_max",
518
- cache_task_stats=True, batch_size_stats=100, statistics=statistics)
519
  orig_task_names = list(reader.task_types.keys())
520
 
521
  new_tasks = get_new_semantic_mapped_tasks()
 
12
  from vre.logger import vre_logger as logger
13
  from vre.readers.multitask_dataset import MultiTaskDataset, MultiTaskItem
14
  from vre.representations import TaskMapper, NpIORepresentation, Representation, build_representations_from_cfg
15
+ from vre_repository import get_vre_repository
16
+ from vre_repository.depth import DepthRepresentation
17
+ from vre_repository.normals import NormalsRepresentation
18
+ from vre_repository.semantic_segmentation import SemanticRepresentation
19
 
20
  def plot_one(data: MultiTaskItem, title: str, order: list[str] | None,
21
  name_to_task: dict[str, Representation]) -> np.ndarray:
 
98
  [0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
99
 
100
  m2f_coco = SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes,
101
+ color_map=coco_color_map, disk_data_argmax=True)
102
  m2f_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
103
+ color_map=mapillary_color_map, disk_data_argmax=True)
104
  m2f_r50_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_1", classes=mapillary_classes,
105
+ color_map=mapillary_color_map, disk_data_argmax=True)
106
  marigold = DepthRepresentation("depth_marigold", min_depth=0, max_depth=1)
107
  normals_svd_marigold = NormalsRepresentation("normals_svd(depth_marigold)")
108
 
 
146
 
147
  @overrides
148
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
149
+ m2f_mapillary_converted = semantic_mapper(dep_data[0].argmax(-1), self.mapping, self.original_classes)
 
150
  return self.disk_to_memory_fmt(m2f_mapillary_converted)
151
 
152
  @overrides
 
204
 
205
  @overrides
206
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
207
+ m2f_mapillary_converted = semantic_mapper(dep_data[0].argmax(-1), self.mapping, self.original_classes)
 
208
  res = self.disk_to_memory_fmt(m2f_mapillary_converted)
209
  return res
210
 
 
257
 
258
  @overrides
259
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
260
+ dep_data_argmaxed = [data.argmax(-1) for data in dep_data]
 
 
 
261
  dep_data_converted = [semantic_mapper(x, mapping, oc)
262
  for x, mapping, oc in zip(dep_data_argmaxed, self.mapping, self.original_classes)]
263
 
 
300
  def merge_fn(self, dep_data: list[MemoryData]) -> MemoryData:
301
  return MemoryData(np.eye(self.n_classes)[sum(dep_data).argmax(-1)].astype(np.uint8))
302
 
 
 
 
 
303
  @overrides
304
  def make_images(self, data: ReprOut) -> np.ndarray:
305
+ data_output = data.output.argmax(-1) if np.issubdtype(data.output.dtype, np.floating) else data.output
306
  return colorize_semantic_segmentation(data_output, self.classes, self.color_map)
307
 
308
  class SafeLandingAreas(BinaryMapper, NpIORepresentation):
 
347
  v1, v2, v3 = normals.transpose(2, 0, 1)
348
  where_safe = (v2 > 0.8) * ((v1 + v3) < 1.2) * (depth <= 0.9)
349
  if self.include_semantics:
350
+ conv1 = np.isin(dep_data[2].argmax(-1), self.safe_mapillary_ix).astype(int)
351
+ conv2 = np.isin(dep_data[3].argmax(-1), self.safe_coco_ix).astype(int)
352
+ conv3 = np.isin(dep_data[4].argmax(-1), self.safe_mapillary_ix).astype(int)
 
 
 
353
  sema_safe = (conv1 + conv2 + conv3) >= 2
354
  where_safe = sema_safe * where_safe
355
  return self.disk_to_memory_fmt(where_safe)
 
489
  return {t.name: t for t in available_tasks if t.name in tasks_subset}
490
 
491
  if __name__ == "__main__":
492
+ cfg_path = Path.cwd() / "cfg.yaml"
493
+ data_path = Path.cwd() / "data"
494
  vre_dir = data_path
495
 
496
  task_names = ["rgb", "depth_marigold", "normals_svd(depth_marigold)",
497
+ "semantic_mask2former_coco_47429163_0", "semantic_mask2former_mapillary_49189528_0"]
 
498
  order = ["rgb", "semantic_mask2former_mapillary_49189528_0", "semantic_mask2former_coco_47429163_0",
499
  "depth_marigold", "normals_svd(depth_marigold)"]
500
 
501
+ repr_types = get_vre_repository()
502
+ task_types = {r.name: r for r in build_representations_from_cfg(cfg_path, repr_types) if r.name in task_names}
 
503
  reader = MultiTaskDataset(vre_dir, task_names=task_names, task_types=task_types,
504
+ handle_missing_data="fill_nan", normalization=None,
505
+ cache_task_stats=True, batch_size_stats=100)
506
  orig_task_names = list(reader.task_types.keys())
507
 
508
  new_tasks = get_new_semantic_mapped_tasks()
vre_dronescapes/cfg.yaml CHANGED
@@ -12,7 +12,7 @@ default_compute_parameters:
12
 
13
  representations:
14
  rgb:
15
- type: default/rgb
16
  dependencies: []
17
  parameters: {}
18
 
@@ -30,7 +30,7 @@ representations:
30
  dependencies: []
31
  parameters:
32
  model_id: "47429163_0"
33
- semantic_argmax_only: True
34
  compute_parameters:
35
  batch_size: 1
36
 
@@ -39,7 +39,7 @@ representations:
39
  dependencies: []
40
  parameters:
41
  model_id: "49189528_0"
42
- semantic_argmax_only: True
43
  compute_parameters:
44
  batch_size: 1
45
 
@@ -48,7 +48,7 @@ representations:
48
  dependencies: []
49
  parameters:
50
  model_id: "49189528_1"
51
- semantic_argmax_only: True
52
  compute_parameters:
53
  batch_size: 1
54
 
 
12
 
13
  representations:
14
  rgb:
15
+ type: color/rgb
16
  dependencies: []
17
  parameters: {}
18
 
 
30
  dependencies: []
31
  parameters:
32
  model_id: "47429163_0"
33
+ disk_data_argmax: True
34
  compute_parameters:
35
  batch_size: 1
36
 
 
39
  dependencies: []
40
  parameters:
41
  model_id: "49189528_0"
42
+ disk_data_argmax: True
43
  compute_parameters:
44
  batch_size: 1
45
 
 
48
  dependencies: []
49
  parameters:
50
  model_id: "49189528_1"
51
+ disk_data_argmax: True
52
  compute_parameters:
53
  batch_size: 1
54