added m2f metris analysis and moved data analysis nb in a dir
Browse files- data/test_set_annotated_only/.task_statistics.npz +3 -0
- scripts/dronescapes_viewer.ipynb +0 -0
- scripts/m2f_metrics_analysis/m2f_main.ipynb +240 -0
- scripts/m2f_metrics_analysis/metrics.csv +8 -0
- scripts/vre_data_analysis.ipynb +0 -0
- scripts/vre_data_analysis/vre_data_analysis.ipynb +0 -0
- scripts/{vre_data_analysis.py → vre_data_analysis/vre_data_analysis.py} +12 -3
data/test_set_annotated_only/.task_statistics.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d9eaa9eb0c01c32f03fea8fb2046a9ce51b39d04c8ca202a3a13c9fa7835a0
|
3 |
+
size 5620
|
scripts/dronescapes_viewer.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
scripts/m2f_metrics_analysis/m2f_main.ipynb
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from mask2former import Mask2Former\n",
|
10 |
+
"import torch as tr\n",
|
11 |
+
"import os\n",
|
12 |
+
"from datetime import datetime\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"from PIL import Image\n",
|
15 |
+
"from vre.utils import (FFmpegVideo, collage_fn, semantic_mapper, FakeVideo,\n",
|
16 |
+
" colorize_semantic_segmentation, image_resize, image_write)\n",
|
17 |
+
"from pathlib import Path\n",
|
18 |
+
"import pandas as pd\n",
|
19 |
+
"from torchmetrics.functional.classification import multiclass_stat_scores\n",
|
20 |
+
"\n",
|
21 |
+
"%load_ext autoreload\n",
|
22 |
+
"%autoreload 2\n",
|
23 |
+
"%matplotlib inline"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"mapi_mapping = {\n",
|
33 |
+
" \"land\": [\"Terrain\", \"Sand\", \"Snow\"],\n",
|
34 |
+
" \"forest\": [\"Vegetation\"],\n",
|
35 |
+
" \"residential\": [\"Building\", \"Utility Pole\", \"Pole\", \"Fence\", \"Wall\", \"Manhole\", \"Street Light\", \"Curb\",\n",
|
36 |
+
" \"Guard Rail\", \"Caravan\", \"Junction Box\", \"Traffic Sign (Front)\", \"Billboard\", \"Banner\",\n",
|
37 |
+
" \"Mailbox\", \"Traffic Sign (Back)\", \"Bench\", \"Fire Hydrant\", \"Trash Can\", \"CCTV Camera\",\n",
|
38 |
+
" \"Traffic Light\", \"Barrier\", \"Rail Track\", \"Phone Booth\", \"Curb Cut\", \"Traffic Sign Frame\",\n",
|
39 |
+
" \"Bike Rack\"],\n",
|
40 |
+
" \"road\": [\"Road\", \"Lane Marking - General\", \"Sidewalk\", \"Bridge\", \"Other Vehicle\", \"Motorcyclist\", \"Pothole\",\n",
|
41 |
+
" \"Catch Basin\", \"Car Mount\", \"Tunnel\", \"Parking\", \"Service Lane\", \"Lane Marking - Crosswalk\",\n",
|
42 |
+
" \"Pedestrian Area\", \"On Rails\", \"Bike Lane\", \"Crosswalk - Plain\"],\n",
|
43 |
+
" \"little-objects\": [\"Car\", \"Person\", \"Truck\", \"Boat\", \"Wheeled Slow\", \"Trailer\", \"Ground Animal\", \"Bicycle\",\n",
|
44 |
+
" \"Motorcycle\", \"Bird\", \"Bus\", \"Ego Vehicle\", \"Bicyclist\", \"Other Rider\"],\n",
|
45 |
+
" \"water\": [\"Water\"],\n",
|
46 |
+
" \"sky\": [\"Sky\"],\n",
|
47 |
+
" \"hill\": [\"Mountain\"]\n",
|
48 |
+
"}\n",
|
49 |
+
"\n",
|
50 |
+
"coco_mapping = {\n",
|
51 |
+
" \"land\": [\"grass-merged\", \"dirt-merged\", \"sand\", \"gravel\", \"flower\", \"playingfield\", \"snow\", \"platform\"],\n",
|
52 |
+
" \"forest\": [\"tree-merged\"],\n",
|
53 |
+
" \"residential\": [\"building-other-merged\", \"house\", \"roof\", \"fence-merged\", \"wall-other-merged\", \"wall-brick\",\n",
|
54 |
+
" \"rock-merged\", \"tent\", \"bridge\", \"bench\", \"window-other\", \"fire hydrant\", \"traffic light\",\n",
|
55 |
+
" \"umbrella\", \"wall-stone\", \"clock\", \"chair\", \"sports ball\", \"floor-other-merged\",\n",
|
56 |
+
" \"floor-wood\", \"stop sign\", \"door-stuff\", \"banner\", \"light\", \"net\", \"surfboard\", \"frisbee\",\n",
|
57 |
+
" \"rug-merged\", \"potted plant\", \"parking meter\", \"tennis racket\", \"sink\", \"hair drier\",\n",
|
58 |
+
" \"food-other-merged\", \"curtain\", \"mirror-stuff\", \"baseball glove\", \"baseball bat\", \"zebra\",\n",
|
59 |
+
" \"spoon\", \"towel\", \"donut\", \"apple\", \"handbag\", \"couch\", \"orange\", \"wall-wood\",\n",
|
60 |
+
" \"window-blind\", \"pizza\", \"cabinet-merged\", \"skateboard\", \"remote\", \"bottle\", \"bed\",\n",
|
61 |
+
" \"table-merged\", \"backpack\", \"bear\", \"wall-tile\", \"cup\", \"scissors\", \"ceiling-merged\",\n",
|
62 |
+
" \"oven\", \"cell phone\", \"microwave\", \"toaster\", \"carrot\", \"fork\", \"giraffe\", \"paper-merged\",\n",
|
63 |
+
" \"cat\", \"book\", \"sandwich\", \"wine glass\", \"pillow\", \"blanket\", \"tie\", \"bowl\", \"snowboard\",\n",
|
64 |
+
" \"vase\", \"toothbrush\", \"toilet\", \"dining table\", \"laptop\", \"tv\", \"cardboard\", \"keyboard\",\n",
|
65 |
+
" \"hot dog\", \"cake\", \"knife\", \"suitcase\", \"refrigerator\", \"fruit\", \"shelf\", \"counter\", \"skis\",\n",
|
66 |
+
" \"banana\", \"teddy bear\", \"broccoli\", \"mouse\"],\n",
|
67 |
+
" \"road\": [\"road\", \"railroad\", \"pavement-merged\", \"stairs\"],\n",
|
68 |
+
" \"little-objects\": [\"truck\", \"car\", \"boat\", \"horse\", \"person\", \"train\", \"elephant\", \"bus\", \"bird\", \"sheep\",\n",
|
69 |
+
" \"cow\", \"motorcycle\", \"dog\", \"bicycle\", \"airplane\", \"kite\"],\n",
|
70 |
+
" \"water\": [\"river\", \"water-other\", \"sea\"],\n",
|
71 |
+
" \"sky\": [\"sky-other-merged\"],\n",
|
72 |
+
" \"hill\": [\"mountain-merged\"]\n",
|
73 |
+
"}\n",
|
74 |
+
"\n",
|
75 |
+
"color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],\n",
|
76 |
+
" [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]\n",
|
77 |
+
"\n",
|
78 |
+
"def eval(y: np.ndarray, gt: np.ndarray) -> float:\n",
|
79 |
+
" tp, fp, _, fn = multiclass_stat_scores(tr.from_numpy(y), tr.from_numpy(gt), num_classes=8, average=None)[:, 0:4].T\n",
|
80 |
+
" iou = (tp / (tp + fp + fn)).nan_to_num(0, 0, 0)\n",
|
81 |
+
" weights = tr.FloatTensor([0.28172092, 0.30589653, 0.13341699, 0.05937348,\n",
|
82 |
+
" 0.00474491, 0.05987466, 0.08660721, 0.06836531])\n",
|
83 |
+
" iou_avg = (iou * weights).sum().item()\n",
|
84 |
+
" return iou_avg\n",
|
85 |
+
"\n",
|
86 |
+
"def collage_fn2(images: list[np.ndarray], size: tuple[int, int], **kwargs):\n",
|
87 |
+
" images_rsz = [image_resize(image, *size) for image in images]\n",
|
88 |
+
" return collage_fn(images_rsz, **kwargs)"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": null,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"video = FFmpegVideo((\"/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/raw_data/videos\"\n",
|
98 |
+
" \"/norway_210821_DJI_0015_full/DJI_0015.MP4\"))\n",
|
99 |
+
"gt_dir = (\"/export/home/proiecte/aux/mihai_cristian.pirvu/datasets/dronescapes/data/\"\n",
|
100 |
+
" \"test_set_annotated_only/semantic_segprop8/norway_210821_DJI_0015_full_\")\n",
|
101 |
+
"print(video)"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"model_id = \"49189528_0\" # \"49189528_1\" (r50/mapillary), \"47429163_0\" (swin/coco), \"49189528_0\" (swin/mapillary)\n",
|
111 |
+
"os.environ[\"VRE_DEVICE\"] = device = \"cuda\" #\"cpu\"\n",
|
112 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"7\"\n",
|
113 |
+
"\n",
|
114 |
+
"m2f_1 = Mask2Former(model_id, semantic_argmax_only=False, name=\"m2f\", dependencies=[])\n",
|
115 |
+
"m2f_2 = Mask2Former(\"47429163_0\", semantic_argmax_only=False, name=\"m2f\", dependencies=[])\n",
|
116 |
+
"m2f_3 = Mask2Former(\"49189528_1\", semantic_argmax_only=False, name=\"m2f\", dependencies=[])\n",
|
117 |
+
"\n",
|
118 |
+
"m2f_1.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
119 |
+
"m2f_2.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
120 |
+
"m2f_3.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
121 |
+
"\n",
|
122 |
+
"metrics = {}"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"frame_ix = 900\n",
|
132 |
+
"def load_gt(ix: int) -> np.ndarray:\n",
|
133 |
+
" gt_path = f\"{gt_dir}{ix}.npz\"\n",
|
134 |
+
" assert Path(gt_path).exists(), gt_path\n",
|
135 |
+
" gt_data = np.load(gt_path)[\"arr_0\"]\n",
|
136 |
+
" return gt_data\n"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [],
|
144 |
+
"source": [
|
145 |
+
"def m2f_do_one(m2f: Mask2Former, frame: np.ndarray, gt_data_shape, mapping: dict) -> tuple[np.ndarray, np.ndarray]:\n",
|
146 |
+
" m2f_1.vre_free() if m2f_1.setup_called and id(m2f) != id(m2f_1) else None\n",
|
147 |
+
" m2f_2.vre_free() if m2f_2.setup_called and id(m2f) != id(m2f_1) else None\n",
|
148 |
+
" m2f_3.vre_free() if m2f_3.setup_called and id(m2f) != id(m2f_1) else None\n",
|
149 |
+
" m2f.vre_setup() if not m2f.setup_called else None\n",
|
150 |
+
"\n",
|
151 |
+
" now = datetime.now()\n",
|
152 |
+
" m2f.data = None\n",
|
153 |
+
" m2f.compute(FakeVideo(frame[None], fps=1), [0])\n",
|
154 |
+
" print(f\"Pred took: {datetime.now() - now}\"); now = datetime.now()\n",
|
155 |
+
" m2f_mapped = semantic_mapper(m2f.data.output.argmax(-1)[0], mapping, m2f.classes)\n",
|
156 |
+
" m2f_mapped = image_resize(m2f_mapped, *gt_data_shape, interpolation=\"nearest\")\n",
|
157 |
+
" print(f\"semantic_mapper took: {datetime.now() - now}\"); now = datetime.now()\n",
|
158 |
+
" m2f_colorized = colorize_semantic_segmentation(m2f_mapped[None], list(mapping), color_map, rgb=rgb_rsz[None])[0]\n",
|
159 |
+
" print(f\"colorize took: {datetime.now() - now}\"); now = datetime.now()\n",
|
160 |
+
" return m2f_mapped, m2f_colorized\n",
|
161 |
+
"\n",
|
162 |
+
"def eval_and_store(frame, frame_ix, res_all: list[tuple[np.ndarray], np.ndarray], gt_color: np.ndarray,\n",
|
163 |
+
" columns: list[str]):\n",
|
164 |
+
" collage_data = []\n",
|
165 |
+
" for item in res_all:\n",
|
166 |
+
" collage_data.extend([frame, item[1], gt_color])\n",
|
167 |
+
" clg = collage_fn2(collage_data, size=gt_color.shape[0:2], rows_cols=(-1, 3))\n",
|
168 |
+
" image_write(clg, f\"collage_{frame_ix}.png\")\n",
|
169 |
+
" display(Image.fromarray(clg))\n",
|
170 |
+
" evals = [eval(item[0], gt_data) for item in res_all]\n",
|
171 |
+
"\n",
|
172 |
+
" try:\n",
|
173 |
+
" metrics = pd.read_csv(\"metrics.csv\", index_col=0)\n",
|
174 |
+
" except Exception as e:\n",
|
175 |
+
" metrics = pd.DataFrame(None, columns=columns)\n",
|
176 |
+
"\n",
|
177 |
+
" metrics.loc[frame_ix] = evals\n",
|
178 |
+
" display(metrics.sort_index())\n",
|
179 |
+
" metrics.to_csv(\"metrics.csv\")\n",
|
180 |
+
"\n",
|
181 |
+
"for frame_ix in [60, 120, 300, 600, 900, 1200, 1500]:\n",
|
182 |
+
" frame, gt_data = video[frame_ix], load_gt(frame_ix)\n",
|
183 |
+
" rgb_rsz = image_resize(frame, *gt_data.shape)\n",
|
184 |
+
" gt_color = colorize_semantic_segmentation(gt_data[None], classes=list(mapi_mapping), color_map=color_map,\n",
|
185 |
+
" rgb=rgb_rsz[None])[0]\n",
|
186 |
+
" mapped1, colorized1 = m2f_do_one(m2f_1, frame, gt_data.shape, mapi_mapping)\n",
|
187 |
+
" mapped2, colorized2 = m2f_do_one(m2f_2, frame, gt_data.shape, coco_mapping)\n",
|
188 |
+
" mapped3, colorized3 = m2f_do_one(m2f_3, frame, gt_data.shape, mapi_mapping)\n",
|
189 |
+
"\n",
|
190 |
+
" mapped1_rsz, colorized1_rsz = m2f_do_one(m2f_1, rgb_rsz, gt_data.shape, mapi_mapping)\n",
|
191 |
+
" mapped2_rsz, colorized2_rsz = m2f_do_one(m2f_2, rgb_rsz, gt_data.shape, coco_mapping)\n",
|
192 |
+
" mapped3_rsz, colorized3_rsz = m2f_do_one(m2f_3, rgb_rsz, gt_data.shape, mapi_mapping)\n",
|
193 |
+
"\n",
|
194 |
+
" all_res = [\n",
|
195 |
+
" (mapped1, colorized1), (mapped2, colorized2), (mapped3, colorized3),\n",
|
196 |
+
" (mapped1_rsz, colorized1_rsz), (mapped2_rsz, colorized2_rsz), (mapped3_rsz, colorized3_rsz),\n",
|
197 |
+
" ]\n",
|
198 |
+
" columns = [\"swin_mapillary\", \"swin_coco\", \"r50_mapillary\",\n",
|
199 |
+
" \"swin_mapillary_rsz\", \"swin_coco_rsz\", \"r50_mapillary_rsz\"]\n",
|
200 |
+
"\n",
|
201 |
+
" eval_and_store(frame, frame_ix, all_res, gt_color, columns)\n"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [],
|
209 |
+
"source": []
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": []
|
217 |
+
}
|
218 |
+
],
|
219 |
+
"metadata": {
|
220 |
+
"kernelspec": {
|
221 |
+
"display_name": "ngc",
|
222 |
+
"language": "python",
|
223 |
+
"name": "python3"
|
224 |
+
},
|
225 |
+
"language_info": {
|
226 |
+
"codemirror_mode": {
|
227 |
+
"name": "ipython",
|
228 |
+
"version": 3
|
229 |
+
},
|
230 |
+
"file_extension": ".py",
|
231 |
+
"mimetype": "text/x-python",
|
232 |
+
"name": "python",
|
233 |
+
"nbconvert_exporter": "python",
|
234 |
+
"pygments_lexer": "ipython3",
|
235 |
+
"version": "3.10.6"
|
236 |
+
}
|
237 |
+
},
|
238 |
+
"nbformat": 4,
|
239 |
+
"nbformat_minor": 2
|
240 |
+
}
|
scripts/m2f_metrics_analysis/metrics.csv
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,swin_mapillary,swin_coco,r50_mapillary,swin_mapillary_rsz,swin_coco_rsz,r50_mapillary_rsz
|
2 |
+
900,0.1421419978141784,0.2064806669950485,0.3687707483768463,0.2772172391414642,0.206145167350769,0.4239617884159088
|
3 |
+
60,0.2167781591415405,0.2062840312719345,0.4351741373538971,0.3048166632652282,0.1999642997980117,0.4761459827423095
|
4 |
+
120,0.2345813512802124,0.2026010006666183,0.4289666712284088,0.3349316716194153,0.199358657002449,0.45726078748703
|
5 |
+
300,0.1704004108905792,0.2161678075790405,0.4017727971076965,0.2839266061782837,0.2174815833568573,0.4474448561668396
|
6 |
+
600,0.1249909698963165,0.2117721140384674,0.3536447584629059,0.2163735926151275,0.2082659006118774,0.4042723476886749
|
7 |
+
1200,0.2162990868091583,0.2044363170862198,0.3678789138793945,0.2966309785842895,0.2034457772970199,0.3900764584541321
|
8 |
+
1500,0.2148686647415161,0.22754918038845062,0.35765504837036133,0.27770155668258667,0.22701863944530487,0.36417320370674133
|
scripts/vre_data_analysis.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
scripts/vre_data_analysis/vre_data_analysis.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/{vre_data_analysis.py → vre_data_analysis/vre_data_analysis.py}
RENAMED
@@ -10,6 +10,7 @@ import io
|
|
10 |
import base64
|
11 |
import bs4
|
12 |
from PIL import Image
|
|
|
13 |
|
14 |
def extract_pil_from_b64_image(base64_buf: str) -> Image:
|
15 |
return Image.open(io.BytesIO(base64.b64decode(base64_buf)))
|
@@ -43,6 +44,7 @@ def save_html(html_imgs: list[str], description: str, out_path: str):
|
|
43 |
open(out_path, "w").write(str(html))
|
44 |
print(f"Written html at '{out_path}'")
|
45 |
|
|
|
46 |
def histogram_from_classification_task(reader: MultiTaskDataset, classif: SemanticRepresentation,
|
47 |
n: int | None = None, mode: str = "sequential", **figkwargs) -> plt.Figure:
|
48 |
fig = plt.Figure(**figkwargs)
|
@@ -59,10 +61,17 @@ def histogram_from_classification_task(reader: MultiTaskDataset, classif: Semant
|
|
59 |
df = pd.DataFrame({"Labels": classif.classes, "Values": counts})
|
60 |
df["Values"] = df["Values"] / df["Values"].sum()
|
61 |
df = df.sort_values("Values", ascending=True)
|
62 |
-
df = df[df["Values"] > 0.
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
fig.gca().set_xlim(0, 1)
|
65 |
-
# fig.gca().set_ylabel("Values")
|
66 |
fig.tight_layout()
|
67 |
plt.close()
|
68 |
return fig
|
|
|
10 |
import base64
|
11 |
import bs4
|
12 |
from PIL import Image
|
13 |
+
import seaborn as sns
|
14 |
|
15 |
def extract_pil_from_b64_image(base64_buf: str) -> Image:
|
16 |
return Image.open(io.BytesIO(base64.b64decode(base64_buf)))
|
|
|
44 |
open(out_path, "w").write(str(html))
|
45 |
print(f"Written html at '{out_path}'")
|
46 |
|
47 |
+
|
48 |
def histogram_from_classification_task(reader: MultiTaskDataset, classif: SemanticRepresentation,
|
49 |
n: int | None = None, mode: str = "sequential", **figkwargs) -> plt.Figure:
|
50 |
fig = plt.Figure(**figkwargs)
|
|
|
61 |
df = pd.DataFrame({"Labels": classif.classes, "Values": counts})
|
62 |
df["Values"] = df["Values"] / df["Values"].sum()
|
63 |
df = df.sort_values("Values", ascending=True)
|
64 |
+
df = df[df["Values"] > 0.005]
|
65 |
+
|
66 |
+
ax = fig.gca()
|
67 |
+
sns.barplot(data=df, y="Labels", x="Values", palette="viridis", legend=True, ax=ax, width=1)
|
68 |
+
|
69 |
+
# Adjust y-axis tick positions and spacing
|
70 |
+
ax.set_title(classif.name, fontsize=14, fontweight='bold')
|
71 |
+
ax.set_ylabel("Labels", fontsize=12)
|
72 |
+
|
73 |
+
fig.set_size_inches(8, 2 if len(df) <= 2 else len(df) * 0.5)
|
74 |
fig.gca().set_xlim(0, 1)
|
|
|
75 |
fig.tight_layout()
|
76 |
plt.close()
|
77 |
return fig
|