Meehai commited on
Commit
7013b7b
·
1 Parent(s): 9b96e4c

slight updates to viewer

Browse files
scripts/dronescapes_viewer/dronescapes_viewer.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
scripts/dronescapes_viewer/dronescapes_viewer.py CHANGED
@@ -1,33 +1,24 @@
 
1
  import sys
2
  import os
3
  os.environ["STATS_PBAR"] = "1"
4
  os.environ["VRE_LOGLEVEL"] = "0"
 
5
  from pathlib import Path
6
  sys.path.append(Path.cwd().parent.__str__())
7
  from pprint import pprint
8
- import random
9
- from vre.readers.multitask_dataset import MultiTaskDataset, MultiTaskItem
10
  from vre.representations import Representation, ReprOut
11
- from vre.utils import MemoryData, reorder_dict
12
  import numpy as np
13
  import torch as tr
14
  from media_processing_lib.collage_maker import collage_fn
15
  from media_processing_lib.image import image_add_title, image_write
16
  import matplotlib.pyplot as plt
17
 
18
- from dronescapes_representations import dronescapes_task_types
19
-
20
- data_path = "../../data/test_set"
21
- stats_path = "../../data/train_set/.task_statistics.npz"
22
- reader = MultiTaskDataset(data_path, task_names=list(dronescapes_task_types),
23
- task_types=dronescapes_task_types, handle_missing_data="fill_nan",
24
- normalization="min_max", cache_task_stats=True, batch_size_stats=300,
25
- statistics=np.load(stats_path, allow_pickle=True)["arr_0"].item())
26
- print(reader)
27
- print("== Shapes ==")
28
- pprint(reader.data_shape)
29
 
30
- def plot_one(data: MultiTaskItem, title: str, name_to_task: dict[str, Representation],
31
  order: list[str] | None = None) -> np.ndarray:
32
  def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
33
  node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
@@ -39,13 +30,24 @@ def plot_one(data: MultiTaskItem, title: str, name_to_task: dict[str, Representa
39
  collage = image_add_title(collage, title, size_px=55, top_padding=110)
40
  return collage
41
 
 
 
 
 
 
 
 
 
 
 
 
42
  print("== Random loaded item ==")
43
- # rand_ix = random.randint(0, len(reader) - 1)
44
- rand_ix = "norway_210821_DJI_0015_full_2774.npz"
45
  data, name = reader[rand_ix] # get a random item
46
  print(name)
47
- # collage = plot_one(data, title=name, name_to_task=reader.name_to_task)
48
-
49
  # plt.figure(figsize=(20, 10))
50
  # plt.imshow(collage)
51
- # image_write(collage, f"collage_{name[0:-4]}.png")
 
1
+ #!/usr/bin/env python3
2
  import sys
3
  import os
4
  os.environ["STATS_PBAR"] = "1"
5
  os.environ["VRE_LOGLEVEL"] = "0"
6
+ import random
7
  from pathlib import Path
8
  sys.path.append(Path.cwd().parent.__str__())
9
  from pprint import pprint
10
+ from vre.readers.multitask_dataset import MultiTaskDataset
 
11
  from vre.representations import Representation, ReprOut
12
+ from vre.utils import MemoryData, reorder_dict, lo
13
  import numpy as np
14
  import torch as tr
15
  from media_processing_lib.collage_maker import collage_fn
16
  from media_processing_lib.image import image_add_title, image_write
17
  import matplotlib.pyplot as plt
18
 
19
+ from dronescapes_representations import get_dronescapes_task_types
 
 
 
 
 
 
 
 
 
 
20
 
21
+ def plot_one(data: dict[str, tr.Tensor], title: str, name_to_task: dict[str, Representation],
22
  order: list[str] | None = None) -> np.ndarray:
23
  def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
24
  node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
 
30
  collage = image_add_title(collage, title, size_px=55, top_padding=110)
31
  return collage
32
 
33
+ data_path = "../../data/test_set"
34
+ stats_path = "../../data/train_set/.task_statistics.npz"
35
+ dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)
36
+ reader = MultiTaskDataset(data_path, task_names=list(dronescapes_task_types),
37
+ task_types=dronescapes_task_types, handle_missing_data="fill_nan",
38
+ normalization="min_max", cache_task_stats=True, batch_size_stats=300,
39
+ statistics=np.load(stats_path, allow_pickle=True)["arr_0"].item())
40
+ print(reader)
41
+ print("== Shapes ==")
42
+ pprint(reader.data_shape)
43
+
44
  print("== Random loaded item ==")
45
+ rand_ix = random.randint(0, len(reader) - 1)
46
+ # rand_ix = "norway_210821_DJI_0015_full_2774.npz"
47
  data, name = reader[rand_ix] # get a random item
48
  print(name)
49
+ collage = plot_one(data, title=name, name_to_task=reader.name_to_task)
50
+ print(lo(collage))
51
  # plt.figure(figsize=(20, 10))
52
  # plt.imshow(collage)
53
+ image_write(collage, f"collage_{name[0:-4]}.png")