import sys from pathlib import Path from vre.representations import Representation from vre_repository.color.rgb import RGB from vre_repository.color.hsv import HSV from vre_repository.depth import DepthRepresentation from vre_repository.normals import NormalsRepresentation from vre_repository.edges import EdgesRepresentation # from vre_repository.optical_flow import OpticalFlowRepresentation from vre_repository.semantic_segmentation import SemanticRepresentation def get_gt_tasks() -> dict[str, Representation]: color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255], [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]] classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"] tasks = [ SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, disk_data_argmax=True), DepthRepresentation("depth_output", min_depth=0, max_depth=300), NormalsRepresentation("camera_normals_output"), ] return {t.name: t for t in tasks} def get_other_tasks(include_semantics_original: bool, include_ci: bool) -> dict[str, Representation]: sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper")) from semantic_mapper import (m2f_mapillary, m2f_coco, m2f_r50_mapillary, BinaryMapper, mapillary_classes, coco_classes) tasks = [ rgb := RGB("rgb"), # OpticalFlowRepresentation("opticalflow_rife"), DepthRepresentation("depth_marigold", min_depth=0, max_depth=1), NormalsRepresentation("normals_svd(depth_marigold)") ] if include_semantics_original: tasks.extend([m2f_mapillary, m2f_coco, m2f_r50_mapillary]) if include_ci: transportation_mapping = [ { "others": [c for c in mapillary_classes if c not in (cls := ["Bike Lane", "Crosswalk - Plain", "Curb Cut", "Parking", "Rail Track", "Road", "Service Lane", "Sidewalk", "Bridge", "Tunnel", "Bicyclist", "Motorcyclist", "Other Rider", "Lane Marking - Crosswalk", "Lane Marking - General", "Traffic Light", "Traffic Sign (Back)", "Traffic Sign (Front)", "Bicycle", "Boat", "Bus", "Car", "Caravan", "Motorcycle", "On Rails", "Other Vehicle", "Trailer", "Truck", "Wheeled Slow", "Car Mount", "Ego Vehicle"])], "transportation": cls, }, { "others": [c for c in coco_classes if c not in (cls := ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "road", "railroad", "pavement-merged"])], "transportation": cls, }, ] tasks.extend([ HSV("hsv", [rgb]), DepthRepresentation("depth_dpt", min_depth=0, max_depth=1), EdgesRepresentation("edges_dexined"), BinaryMapper("transportation_ci", [m2f_mapillary, m2f_coco], transportation_mapping, mode="at_least_one"), ]) return {t.name: t for t in tasks} def get_dronescapes_task_types(include_semantics_original: bool, include_gt: bool, include_ci: bool) -> dict[str, Representation]: sys.path.append(str(Path(__file__).parents[1] / "semantic_mapper")) from semantic_mapper import get_new_semantic_mapped_tasks res = { **get_new_semantic_mapped_tasks(), **get_other_tasks(include_semantics_original, include_ci), **(get_gt_tasks() if include_gt else {}), } return res dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)