#!/usr/bin/env python3 import os import torch as tr import numpy as np import matplotlib.pyplot as plt from functools import lru_cache from omegaconf import OmegaConf from pathlib import Path from torch.nn import functional as F from argparse import ArgumentParser, Namespace from tqdm import tqdm from vre.utils import clip, AtomicOpen from vre import FFmpegVideo from vre_repository.optical_flow.raft import FlowRaft from matplotlib.cm import hot device = "cuda" if tr.cuda.is_available() else "cpu" def _vre_inference(model: "Representation", video: "Video", ixs: list[int]) -> np.ndarray: model.data = None model.compute(video, ixs) return model.data.output def warp_image_torch(rgb_t_numpy: np.ndarray, flow_numpy: np.ndarray) -> np.ndarray: image = tr.tensor(rgb_t_numpy).permute(0, 3, 1, 2).float().to(device) flow = tr.tensor(flow_numpy).float().to(device) H, W = image.shape[-2:] # Create normalized meshgrid [-1,1] for grid_sample grid_x, grid_y = tr.meshgrid( tr.linspace(-1, 1, W, device=image.device), tr.linspace(-1, 1, H, device=image.device), indexing="xy", ) grid = tr.stack((grid_x, grid_y), dim=-1) # (H, W, 2), normalized [-1, 1] new_grid = grid - flow # why minus ? # Warp image using grid_sample warped = F.grid_sample(image, new_grid, mode="bilinear", align_corners=True) warped_numpy = warped.permute(0, 2, 3, 1).cpu().numpy() return warped_numpy @lru_cache(maxsize=100) def _npload(pth: str) -> np.ndarray: return np.load(pth)["arr_0"] def get_args() -> Namespace: parser = ArgumentParser() parser.add_argument("video_path", type=Path) parser.add_argument("semantic_preds_path", type=Path, help="Path to 0.npz,..., N.npz argmaxed predictions") parser.add_argument("--frames", type=str) parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--delta", type=int, default=1) parser.add_argument("--output_path", "-o", type=Path, help="Path to output csv file") args = parser.parse_args() assert args.delta >= 1, args.delta assert args.batch_size >= 1, args.batch_size assert args.output_path.suffix == ".csv", args.output_path assert args.semantic_preds_path.exists(), args.semantic_preds_path args.frames = list(range(*map(int, args.frames.split("..")))) if args.frames is not None else None return args def main(args: Namespace): video = FFmpegVideo(args.video_path) h, w = video.shape[1:3] raft_r = FlowRaft(name="flow_raft", dependencies=[], inference_width=w, inference_height=h, iters=5, small=False, delta=args.delta) raft_l = FlowRaft(name="flow_raft", dependencies=[], inference_width=w, inference_height=h, iters=5, small=False, delta=-args.delta) raft_r.device = raft_l.device = device raft_r.vre_setup() if raft_r.setup_called is False else None raft_l.vre_setup() if raft_l.setup_called is False else None frames = list(range(len(video))) if args.frames is None else args.frames if args.output_path.exists(): with AtomicOpen(args.output_path, "r") as f: data = f.readlines()[1:] done_frames = list(map(int, [x.split(",")[0] for x in data])) b4 = len(frames) frames = [f for f in frames if f not in done_frames] print(f"Eliminating previously computed frames. Before: {b4} frames. After: {len(frames)} frames left") else: with AtomicOpen(args.output_path, "w") as f: f.write("frame, delta, score\n") batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)] assert all((args.semantic_preds_path / f"{f}.npz").exists() for f in frames) for ixs in tqdm(batches): ixs_l = [clip(ix + raft_l.delta, 0, len(video) - 1) for ix in ixs] ixs_r = [clip(ix + raft_r.delta, 0, len(video) - 1) for ix in ixs] rgb = video[ixs] rgb_l = video[ixs_l] rgb_r = video[ixs_r] sema = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs]) sema_l = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs_l]) sema_r = np.array([_npload(str(args.semantic_preds_path / f"{ix}.npz")) for ix in ixs_r]) flow_l = _vre_inference(raft_l, video, ixs) rgb_warp_l = warp_image_torch(rgb, flow_l) mask_l = rgb_warp_l.sum(axis=-1) != 0 sema_warp_l = warp_image_torch(sema[..., None], flow_l)[..., 0].round().astype(np.uint8) diff_sema_l = (sema_l != sema_warp_l).astype(int) flow_r = _vre_inference(raft_r, video, ixs) rgb_warp_r = warp_image_torch(rgb, flow_r) mask_r = rgb_warp_r.sum(axis=-1) != 0 sema_warp_r = warp_image_torch(sema[..., None], flow_r)[..., 0].round().astype(np.uint8) diff_sema_r = (sema_r != sema_warp_r).astype(int) # best score = 1 (all agree). Worst score = 0 (none agree). 1/2 means either left or right flow agrees. score = 1 - (diff_sema_l + diff_sema_r) / 2 mask = mask_l * mask_r score_valid_perc = [100 * (score[i] * mask[i]).sum() / mask[i].sum() for i in range(len(ixs))] with AtomicOpen(args.output_path, "a+") as f: for i in range(len(ixs)): f.write(f"{ixs[i]}, {args.delta}, {score_valid_perc[i]:.2f}\n") if __name__ == "__main__": main(get_args())