#!/usr/bin/env python3 import sys import os os.environ["STATS_PBAR"] = "1" os.environ["VRE_LOGLEVEL"] = "0" import random from pathlib import Path sys.path.append(Path.cwd().parent.__str__()) from pprint import pprint from vre.readers.multitask_dataset import MultiTaskDataset from vre.representations import Representation, ReprOut from vre.utils import MemoryData, reorder_dict, lo import numpy as np import torch as tr from media_processing_lib.collage_maker import collage_fn from media_processing_lib.image import image_add_title, image_write import matplotlib.pyplot as plt from datetime import datetime from dronescapes_representations import get_dronescapes_task_types def plot_one(data: dict[str, tr.Tensor], title: str, name_to_task: dict[str, Representation], order: list[str] | None = None) -> np.ndarray: def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray: node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0]) return node.make_images()[0] img_data = {} keys = np.random.permutation(list(data.keys())) for k in keys: start = datetime.now() img_data[k] = vre_plot_fn(data["rgb"], data[k], name_to_task[k]) print(k, (datetime.now() - start).total_seconds()) img_data = reorder_dict(img_data, order) if order is not None else img_data titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data] collage = collage_fn(list(img_data.values()), titles=titles, size_px=40) collage = image_add_title(collage, title, size_px=55, top_padding=110) return collage data_path = "../../data/test_set" stats_path = "../../data/train_set/.task_statistics.npz" dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False) task_names = ["rgb", "semantic_mask2former_r50_mapillary_converted", "semantic_mask2former_swin_coco_converted"] reader = MultiTaskDataset(data_path, task_names=task_names, task_types=dronescapes_task_types, handle_missing_data="fill_nan", normalization="min_max", cache_task_stats=True, batch_size_stats=300, statistics=np.load(stats_path, allow_pickle=True)["arr_0"].item()) print(reader) print("== Shapes ==") pprint(reader.data_shape) print("== Random loaded item ==") rand_ix = random.randint(0, len(reader) - 1) # rand_ix = "norway_210821_DJI_0015_full_2774.npz" data, name = reader[rand_ix] # get a random item print(name) collage = plot_one(data, title=name, name_to_task=reader.name_to_task) print(lo(collage)) # plt.figure(figsize=(20, 10)) # plt.imshow(collage) image_write(collage, out_path := f"collage_{name[0:-4]}.png") print(f"Stored at '{out_path}'")