MidhunKanadan commited on
Commit
020bc00
·
verified ·
1 Parent(s): 9d5982d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -16
README.md CHANGED
@@ -1,12 +1,11 @@
1
  ---
2
  license: mit
3
  ---
 
4
  # Populist Argument Schemes 🗣️
5
 
6
  A curated dataset of translated tweets from four political leaders, annotated with argument schemes according to argumentation theory. The dataset enables fine-tuning and evaluation of language models for argument mining, rhetorical analysis, and populist discourse detection.
7
 
8
- ---
9
-
10
  ## Dataset Summary
11
 
12
  This dataset contains **English-translated tweets** from:
@@ -17,16 +16,12 @@ This dataset contains **English-translated tweets** from:
17
 
18
  Each tweet is annotated with its **primary argumentation scheme** (based on *Argument 1*) following a scheme taxonomy inspired by Walton and Macagno. The dataset is derived from Fabrizio Macagno's original annotated corpus on the *Language of Populism* and translated for cross-lingual NLP applications.
19
 
20
- ---
21
-
22
  ## Features
23
 
24
  - `Politician`: Name of the political figure (e.g., "Trump")
25
  - `Argument`: The tweet text (translated into English)
26
  - `Argument Scheme`: The full name of the primary argumentation scheme (e.g., "Argument from Consequences")
27
 
28
- ---
29
-
30
  ## Argument Scheme Labels
31
 
32
  The dataset includes 13 argument schemes:
@@ -47,18 +42,14 @@ The dataset includes 13 argument schemes:
47
  | PR | Argument from Practical Reasoning |
48
  | VV | Victimization |
49
 
50
- ---
51
-
52
  ## Use Cases
53
 
54
  This dataset can be used for:
55
-
56
  - Fine-tuning LLMs for **argument scheme classification**
57
  - Training models for **argument mining** and **fallacy detection**
58
  - Studying **populist rhetoric** and comparative discourse analysis
59
  - Building educational tools for **teaching argumentation theory**
60
 
61
- ```markdown
62
  ## How to Use 🧠
63
 
64
  You can easily load this dataset using the 🤗 `datasets` library, which allows seamless integration with Hugging Face Transformers, evaluation tools, and fine-tuning pipelines.
@@ -89,9 +80,4 @@ print(dataset["train"][0])
89
 
90
  If you use this dataset, please cite the original author:
91
 
92
- > Macagno, F. (2022). Argumentation schemes, fallacies, and evidence in politicians argumentative tweets – a coded dataset. *Data in Brief*, 44, 108501. https://doi.org/10.1016/j.dib.2022.108501
93
-
94
- ---
95
-
96
-
97
-
 
1
  ---
2
  license: mit
3
  ---
4
+
5
  # Populist Argument Schemes 🗣️
6
 
7
  A curated dataset of translated tweets from four political leaders, annotated with argument schemes according to argumentation theory. The dataset enables fine-tuning and evaluation of language models for argument mining, rhetorical analysis, and populist discourse detection.
8
 
 
 
9
  ## Dataset Summary
10
 
11
  This dataset contains **English-translated tweets** from:
 
16
 
17
  Each tweet is annotated with its **primary argumentation scheme** (based on *Argument 1*) following a scheme taxonomy inspired by Walton and Macagno. The dataset is derived from Fabrizio Macagno's original annotated corpus on the *Language of Populism* and translated for cross-lingual NLP applications.
18
 
 
 
19
  ## Features
20
 
21
  - `Politician`: Name of the political figure (e.g., "Trump")
22
  - `Argument`: The tweet text (translated into English)
23
  - `Argument Scheme`: The full name of the primary argumentation scheme (e.g., "Argument from Consequences")
24
 
 
 
25
  ## Argument Scheme Labels
26
 
27
  The dataset includes 13 argument schemes:
 
42
  | PR | Argument from Practical Reasoning |
43
  | VV | Victimization |
44
 
 
 
45
  ## Use Cases
46
 
47
  This dataset can be used for:
 
48
  - Fine-tuning LLMs for **argument scheme classification**
49
  - Training models for **argument mining** and **fallacy detection**
50
  - Studying **populist rhetoric** and comparative discourse analysis
51
  - Building educational tools for **teaching argumentation theory**
52
 
 
53
  ## How to Use 🧠
54
 
55
  You can easily load this dataset using the 🤗 `datasets` library, which allows seamless integration with Hugging Face Transformers, evaluation tools, and fine-tuning pipelines.
 
80
 
81
  If you use this dataset, please cite the original author:
82
 
83
+ > Macagno, F. (2022). Argumentation schemes, fallacies, and evidence in politicians' argumentative tweets – a coded dataset. *Data in Brief*, 44, 108501. https://doi.org/10.1016/j.dib.2022.108501