MoaazId commited on
Commit
a377382
·
1 Parent(s): 0a86546

Upload 2 files

Browse files
Files changed (2) hide show
  1. cityscape.py +130 -0
  2. create_jsonl_file.py +53 -0
cityscape.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from huggingface_hub import hf_hub_url # hf_hub_url is used to construct the URL of a file from the given information.
3
+
4
+ import datasets
5
+ import os
6
+
7
+ #_VERSION = datasets.Version("0.0.2")
8
+
9
+ _DESCRIPTION = "TODO"
10
+ _HOMEPAGE = "TODO"
11
+ _LICENSE = "TODO"
12
+ _CITATION = "TODO"
13
+
14
+ _FEATURES = datasets.Features(
15
+ {
16
+ "image": datasets.Image(),
17
+ "conditioning_image": datasets.Image(),
18
+ "text": datasets.Value("string"),
19
+ },
20
+ )
21
+
22
+ METADATA_URL = hf_hub_url(
23
+ "MoaazId/cityscape",
24
+ filename="train.jsonl",
25
+ repo_type="dataset",
26
+ )
27
+
28
+ IMAGES_URL = hf_hub_url(
29
+ "MoaazId/cityscape",
30
+ filename="leftImg8bit.zip/train/"+f"{city}", #M
31
+ repo_type="dataset",
32
+ )
33
+
34
+ CONDITIONING_IMAGES_URL = hf_hub_url(
35
+ "MoaazId/cityscape",
36
+ filename="gtCoarse.zip/train/"+f"{city}", #M
37
+ repo_type="dataset",
38
+ )
39
+
40
+ _DEFAULT_CONFIG = datasets.BuilderConfig(name="default")
41
+
42
+
43
+ class Cityscape(datasets.GeneratorBasedBuilder):
44
+ BUILDER_CONFIGS = [_DEFAULT_CONFIG]
45
+ DEFAULT_CONFIG_NAME = "default"
46
+
47
+ def _info(self):
48
+ return datasets.DatasetInfo(
49
+ description=_DESCRIPTION,
50
+ features=_FEATURES,
51
+ supervised_keys=None,
52
+ homepage=_HOMEPAGE,
53
+ license=_LICENSE,
54
+ citation=_CITATION,
55
+ )
56
+
57
+ def _split_generators(self, dl_manager):
58
+ metadata_path = dl_manager.download(METADATA_URL)
59
+ images_dir = dl_manager.download_and_extract(IMAGES_URL)
60
+ conditioning_images_dir = dl_manager.download_and_extract(
61
+ CONDITIONING_IMAGES_URL
62
+ )
63
+
64
+
65
+ # Iterate through the city folders in the image directory
66
+ for city_folder in os.listdir(images_dir):
67
+ city_dir = os.path.join(images_dir, city_folder)
68
+
69
+ # Iterate through image files in the city directory
70
+ for image_filename in os.listdir(city_dir):
71
+ # Extract relevant information from the image filename
72
+ parts = image_filename.split("_")
73
+ city = parts[0]
74
+ seq = parts[1]
75
+ frame = parts[2]
76
+
77
+ # Construct the paths to the image and conditioning image
78
+ image_path = os.path.join(city_dir, image_filename)
79
+ conditioning_image_filename = f"{city}_{seq}_{frame}_gtCoarse_color.png"
80
+ conditioning_image_path = os.path.join(conditioning_dir, city_folder+"/"+conditioning_image_filename)
81
+
82
+ # Create a dataset entry as a dictionary
83
+ entry = {
84
+ "text": "A view to a street from a car's front window",
85
+ "image": image_path,
86
+ "conditioning_image": conditioning_image_path,
87
+ }
88
+
89
+
90
+
91
+
92
+ return [
93
+ datasets.SplitGenerator(
94
+ name=datasets.Split.TRAIN,
95
+ # These kwargs will be passed to _generate_examples
96
+ gen_kwargs={
97
+ "metadata_path": metadata_path,
98
+ "images_dir": images_dir,
99
+ "conditioning_images_dir": conditioning_images_dir,
100
+ },
101
+ ),
102
+ ]
103
+
104
+ def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
105
+ metadata = pd.read_json(metadata_path, lines=True)
106
+
107
+ for _, row in metadata.iterrows():
108
+ text = row["text"]
109
+
110
+ image_path = row["image"]
111
+ image_path = os.path.join(images_dir, image_path)
112
+ image = open(image_path, "rb").read()
113
+
114
+ conditioning_image_path = row["conditioning_image"]
115
+ conditioning_image_path = os.path.join(
116
+ conditioning_images_dir, row["conditioning_image"]
117
+ )
118
+ conditioning_image = open(conditioning_image_path, "rb").read()
119
+
120
+ yield row["image"], {
121
+ "text": text,
122
+ "image": {
123
+ "path": image_path,
124
+ "bytes": image,
125
+ },
126
+ "conditioning_image": {
127
+ "path": conditioning_image_path,
128
+ "bytes": conditioning_image,
129
+ },
130
+ }
create_jsonl_file.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ # Define the directory where your dataset images are located
5
+ #dataset_directory = "cityscape_dataset"
6
+
7
+ # Define the directories for images and conditioning images
8
+ #image_dir = os.path.join(dataset_directory, "leftImg8bit/train")
9
+ #conditioning_dir = os.path.join(dataset_directory, "gtCoarse/train")
10
+
11
+ image_dir = "leftImg8bit/train"
12
+ conditioning_dir = "gtCoarse/train"
13
+
14
+ # Define the output JSONL filename
15
+ jsonl_filename = "train.jsonl"
16
+
17
+ # Initialize an empty list to store the dataset entries
18
+ dataset_entries = []
19
+
20
+ # Iterate through the city folders in the image directory
21
+ for city_folder in os.listdir(image_dir):
22
+ city_dir = os.path.join(image_dir, city_folder)
23
+
24
+ # Iterate through image files in the city directory
25
+ for image_filename in os.listdir(city_dir):
26
+ # Extract relevant information from the image filename
27
+ parts = image_filename.split("_")
28
+ city = parts[0]
29
+ seq = parts[1]
30
+ frame = parts[2]
31
+
32
+ # Construct the paths to the image and conditioning image
33
+ image_path = os.path.join(city_dir, image_filename)
34
+ conditioning_image_filename = f"{city}_{seq}_{frame}_gtCoarse_color.png"
35
+ conditioning_image_path = os.path.join(conditioning_dir, city_folder+"/"+conditioning_image_filename)
36
+
37
+ # Create a dataset entry as a dictionary
38
+ entry = {
39
+ "text": "A view to a street from a car's front window",
40
+ "image": image_path,
41
+ "conditioning_image": conditioning_image_path,
42
+ }
43
+
44
+ # Append the entry dictionary to the list
45
+ dataset_entries.append(entry)
46
+
47
+ # Open the JSONL file for writing
48
+ with open(jsonl_filename, "w") as jsonl_file:
49
+ # Write each entry as a JSON string followed by a newline character
50
+ for entry in dataset_entries:
51
+ jsonl_file.write(json.dumps(entry) + "\n")
52
+
53
+ print(f"JSON Lines file '{jsonl_filename}' has been created.")