--- language: fa license: cc-by-4.0 tags: - audio - speech-recognition - fleurs - persian - farsi pretty_name: FLEURS Farsi (fa_ir) Processed dataset_info: features: - name: audio dtype: audio sampling_rate: 16000 - name: transcription dtype: string splits: dev: name: dev num_bytes: 352117826 num_examples: 369 test: name: test num_bytes: 852844223 num_examples: 871 train: name: train num_bytes: 2811193790 num_examples: 3101 download_size: 3934177703 dataset_size: 4016155839 configs: - config_name: default data_files: - split: dev path: data/dev-* - split: test path: data/test-* - split: train path: data/train-* task_categories: - automatic-speech-recognition --- # FLEURS Farsi (fa_ir) - Processed Dataset ## Dataset Description This dataset contains the Farsi (Persian, `fa_ir`) portion of the **FLEURS (Few-shot Learning Evaluation of Universal Representations of Speech)** dataset, processed into a Hugging Face `datasets` compatible format. FLEURS is a many-language speech dataset created by Google, designed for evaluating speech recognition systems, particularly in low-resource scenarios. This version includes audio recordings and their corresponding transcriptions, split into train, development (dev), and test sets. The audio is sampled at 16kHz. **Languages:** Farsi (Persian) - `fa` ## How to Use You can load this dataset using the Hugging Face `datasets` library: ```python from datasets import load_dataset dataset_name = "msghol/fleurs-farsi" # Updated repository name fleurs_farsi = load_dataset(dataset_name) # Accessing a split print(fleurs_farsi["train"]) # Accessing an example example = fleurs_farsi["train"][0] audio_sample = example["audio"] transcription = example["transcription"] print(f"Audio: {audio_sample}") print(f"Transcription: {transcription}")