File size: 4,182 Bytes
03996ca 6aa2c6d 03996ca 4742f46 90b619e 03996ca e98b921 03996ca b88de5a 03996ca e98b921 03996ca e98b921 03996ca 2c28877 04f36c4 2c28877 0215d1e 4742f46 2c28877 03996ca 4742f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
language:
- en
- fr
- ja
- pt
- ru
- zh
license: cc-by-4.0
dataset_info:
- config_name: en
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 282033
num_examples: 2325
download_size: 135735
dataset_size: 282033
- config_name: fr
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 10323
num_examples: 83
download_size: 7763
dataset_size: 10323
- config_name: jp
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 153848
num_examples: 959
download_size: 71460
dataset_size: 153848
- config_name: pt
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 33333
num_examples: 263
download_size: 17875
dataset_size: 33333
- config_name: ru
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 73406
num_examples: 315
download_size: 30788
dataset_size: 73406
- config_name: zh
features:
- name: sentence
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 105822
num_examples: 504
download_size: 82106
dataset_size: 105822
configs:
- config_name: en
data_files:
- split: test
path: en/test-*
- config_name: fr
data_files:
- split: test
path: fr/test-*
- config_name: jp
data_files:
- split: test
path: jp/test-*
- config_name: pt
data_files:
- split: test
path: pt/test-*
- config_name: ru
data_files:
- split: test
path: ru/test-*
- config_name: zh
data_files:
- split: test
path: zh/test-*
---
## XWinograd
Multilingual winograd schema challenge as used in [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786).
### Languages & Samples
- "en": 2325
- "fr": 83
- "jp": 959
- "pt": 263
- "ru": 315
- "zh": 504
### Dataset creation
The Winograd schema challenges in this dataset combine winograd schemas from the XWinograd dataset introduced in Tikhonov et al and as it only contains 16 Chinese schemas, we add 488 Chinese schemas from `clue/cluewsc2020`.
If you only want the original xwinograd chinese schemas only, do:
`load_dataset("Muennighoff/xwinograd", "zh")["test"][0][:16]`
## Additional Information
### Citation Information
```bibtex
@misc{muennighoff2022crosslingual,
title={Crosslingual Generalization through Multitask Finetuning},
author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel},
year={2022},
eprint={2211.01786},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@misc{tikhonov2021heads,
title={It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning},
author={Alexey Tikhonov and Max Ryabinin},
year={2021},
eprint={2106.12066},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### License
Like the original [English winograd schema challenge](https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html), this dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). I.e. you can use it for commercial purposes etc. :)
### Contributions
Thanks to Jordan Clive, @yongzx & @khalidalt for support on adding Chinese.
|