Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,182 Bytes
03996ca
 
 
 
6aa2c6d
03996ca
 
 
4742f46
90b619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03996ca
 
 
 
e98b921
03996ca
b88de5a
 
 
 
 
 
 
 
03996ca
 
 
e98b921
03996ca
e98b921
03996ca
 
 
2c28877
 
 
 
 
04f36c4
 
 
 
 
 
 
2c28877
 
 
0215d1e
 
 
 
 
 
 
 
 
 
 
4742f46
 
 
 
 
2c28877
03996ca
 
4742f46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
language:
- en
- fr
- ja
- pt
- ru
- zh
license: cc-by-4.0
dataset_info:
- config_name: en
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 282033
    num_examples: 2325
  download_size: 135735
  dataset_size: 282033
- config_name: fr
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 10323
    num_examples: 83
  download_size: 7763
  dataset_size: 10323
- config_name: jp
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 153848
    num_examples: 959
  download_size: 71460
  dataset_size: 153848
- config_name: pt
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 33333
    num_examples: 263
  download_size: 17875
  dataset_size: 33333
- config_name: ru
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 73406
    num_examples: 315
  download_size: 30788
  dataset_size: 73406
- config_name: zh
  features:
  - name: sentence
    dtype: string
  - name: option1
    dtype: string
  - name: option2
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 105822
    num_examples: 504
  download_size: 82106
  dataset_size: 105822
configs:
- config_name: en
  data_files:
  - split: test
    path: en/test-*
- config_name: fr
  data_files:
  - split: test
    path: fr/test-*
- config_name: jp
  data_files:
  - split: test
    path: jp/test-*
- config_name: pt
  data_files:
  - split: test
    path: pt/test-*
- config_name: ru
  data_files:
  - split: test
    path: ru/test-*
- config_name: zh
  data_files:
  - split: test
    path: zh/test-*
---

## XWinograd

Multilingual winograd schema challenge as used in [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786).

### Languages & Samples

- "en": 2325
- "fr": 83
- "jp": 959
- "pt": 263 
- "ru": 315
- "zh": 504

### Dataset creation

The Winograd schema challenges in this dataset combine winograd schemas from the XWinograd dataset introduced in Tikhonov et al and as it only contains 16 Chinese schemas, we add 488 Chinese schemas from `clue/cluewsc2020`.

If you only want the original xwinograd chinese schemas only, do:

`load_dataset("Muennighoff/xwinograd", "zh")["test"][0][:16]`

## Additional Information

### Citation Information

```bibtex
@misc{muennighoff2022crosslingual,
      title={Crosslingual Generalization through Multitask Finetuning}, 
      author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel},
      year={2022},
      eprint={2211.01786},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```bibtex
@misc{tikhonov2021heads,
    title={It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning},
    author={Alexey Tikhonov and Max Ryabinin},
    year={2021},
    eprint={2106.12066},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

### License

Like the original [English winograd schema challenge](https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html), this dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). I.e. you can use it for commercial purposes etc. :)


### Contributions

Thanks to Jordan Clive, @yongzx & @khalidalt for support on adding Chinese.