|
|
import sys |
|
|
import time |
|
|
from PIL import Image, ImageDraw |
|
|
|
|
|
from yolo_utils import * |
|
|
from darknet import Darknet |
|
|
|
|
|
import cv2 |
|
|
|
|
|
namesfile=None |
|
|
def detect(cfgfile, weightfile, imgfolder): |
|
|
m = Darknet(cfgfile) |
|
|
|
|
|
|
|
|
m.load_weights(weightfile) |
|
|
print('Loading weights from %s... Done!' % (weightfile)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_cuda = True |
|
|
if use_cuda: |
|
|
m.cuda() |
|
|
|
|
|
imgfiles = [x for x in os.listdir(imgfolder) if x[-4:] == '.jpg'] |
|
|
imgfiles.sort() |
|
|
for imgname in imgfiles: |
|
|
imgfile = os.path.join(imgfolder,imgname) |
|
|
|
|
|
img = Image.open(imgfile).convert('RGB') |
|
|
sized = img.resize((m.width, m.height)) |
|
|
|
|
|
|
|
|
start = time.time() |
|
|
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda) |
|
|
finish = time.time() |
|
|
|
|
|
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start))) |
|
|
|
|
|
class_names = load_class_names(namesfile) |
|
|
img = plot_boxes(img, boxes, 'result/{}'.format(os.path.basename(imgfile)), class_names) |
|
|
img = np.array(img) |
|
|
cv2.imshow('{}'.format(os.path.basename(imgfolder)), img) |
|
|
cv2.resizeWindow('{}'.format(os.path.basename(imgfolder)), 1000,800) |
|
|
cv2.waitKey(1000) |
|
|
|
|
|
def detect_cv2(cfgfile, weightfile, imgfile): |
|
|
import cv2 |
|
|
m = Darknet(cfgfile) |
|
|
|
|
|
m.print_network() |
|
|
m.load_weights(weightfile) |
|
|
print('Loading weights from %s... Done!' % (weightfile)) |
|
|
|
|
|
if m.num_classes == 20: |
|
|
namesfile = 'data/voc.names' |
|
|
elif m.num_classes == 80: |
|
|
namesfile = 'data/coco.names' |
|
|
else: |
|
|
namesfile = 'data/names' |
|
|
|
|
|
use_cuda = True |
|
|
if use_cuda: |
|
|
m.cuda() |
|
|
|
|
|
img = cv2.imread(imgfile) |
|
|
sized = cv2.resize(img, (m.width, m.height)) |
|
|
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
for i in range(2): |
|
|
start = time.time() |
|
|
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda) |
|
|
finish = time.time() |
|
|
if i == 1: |
|
|
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start))) |
|
|
|
|
|
class_names = load_class_names(namesfile) |
|
|
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names) |
|
|
|
|
|
def detect_skimage(cfgfile, weightfile, imgfile): |
|
|
from skimage import io |
|
|
from skimage.transform import resize |
|
|
m = Darknet(cfgfile) |
|
|
|
|
|
m.print_network() |
|
|
m.load_weights(weightfile) |
|
|
print('Loading weights from %s... Done!' % (weightfile)) |
|
|
|
|
|
if m.num_classes == 20: |
|
|
namesfile = 'data/voc.names' |
|
|
elif m.num_classes == 80: |
|
|
namesfile = 'data/coco.names' |
|
|
else: |
|
|
namesfile = 'data/names' |
|
|
|
|
|
use_cuda = True |
|
|
if use_cuda: |
|
|
m.cuda() |
|
|
|
|
|
img = io.imread(imgfile) |
|
|
sized = resize(img, (m.width, m.height)) * 255 |
|
|
|
|
|
for i in range(2): |
|
|
start = time.time() |
|
|
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda) |
|
|
finish = time.time() |
|
|
if i == 1: |
|
|
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start))) |
|
|
|
|
|
class_names = load_class_names(namesfile) |
|
|
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
if len(sys.argv) == 5: |
|
|
cfgfile = sys.argv[1] |
|
|
weightfile = sys.argv[2] |
|
|
imgfolder = sys.argv[3] |
|
|
cv2.namedWindow('{}'.format(os.path.basename(imgfolder)), cv2.WINDOW_NORMAL ) |
|
|
cv2.resizeWindow('{}'.format(os.path.basename(imgfolder)), 1000,800) |
|
|
globals()["namesfile"] = sys.argv[4] |
|
|
detect(cfgfile, weightfile, imgfolder) |
|
|
|
|
|
|
|
|
else: |
|
|
print('Usage: ') |
|
|
print(' python detect.py cfgfile weightfile imgfolder names') |
|
|
|
|
|
|