NamYeongCho's picture
Upload entire local dataset folder
443c61f verified
raw
history blame
4.07 kB
import sys
import time
from PIL import Image, ImageDraw
#from models.tiny_yolo import TinyYoloNet
from yolo_utils import *
from darknet import Darknet
import cv2
namesfile=None
def detect(cfgfile, weightfile, imgfolder):
m = Darknet(cfgfile)
#m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
# if m.num_classes == 20:
# namesfile = 'data/voc.names'
# elif m.num_classes == 80:
# namesfile = 'data/coco.names'
# else:
# namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
imgfiles = [x for x in os.listdir(imgfolder) if x[-4:] == '.jpg']
imgfiles.sort()
for imgname in imgfiles:
imgfile = os.path.join(imgfolder,imgname)
img = Image.open(imgfile).convert('RGB')
sized = img.resize((m.width, m.height))
#for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
#if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
img = plot_boxes(img, boxes, 'result/{}'.format(os.path.basename(imgfile)), class_names)
img = np.array(img)
cv2.imshow('{}'.format(os.path.basename(imgfolder)), img)
cv2.resizeWindow('{}'.format(os.path.basename(imgfolder)), 1000,800)
cv2.waitKey(1000)
def detect_cv2(cfgfile, weightfile, imgfile):
import cv2
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
img = cv2.imread(imgfile)
sized = cv2.resize(img, (m.width, m.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
def detect_skimage(cfgfile, weightfile, imgfile):
from skimage import io
from skimage.transform import resize
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
img = io.imread(imgfile)
sized = resize(img, (m.width, m.height)) * 255
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
if __name__ == '__main__':
if len(sys.argv) == 5:
cfgfile = sys.argv[1]
weightfile = sys.argv[2]
imgfolder = sys.argv[3]
cv2.namedWindow('{}'.format(os.path.basename(imgfolder)), cv2.WINDOW_NORMAL )
cv2.resizeWindow('{}'.format(os.path.basename(imgfolder)), 1000,800)
globals()["namesfile"] = sys.argv[4]
detect(cfgfile, weightfile, imgfolder)
#detect_cv2(cfgfile, weightfile, imgfile)
#detect_skimage(cfgfile, weightfile, imgfile)
else:
print('Usage: ')
print(' python detect.py cfgfile weightfile imgfolder names')
#detect('cfg/tiny-yolo-voc.cfg', 'tiny-yolo-voc.weights', 'data/person.jpg', version=1)