File size: 8,985 Bytes
7fe963c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import sys
import argparse
import math
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
from megatron.core.datasets.indexed_dataset import (
IndexedDataset,
IndexedDatasetBuilder,
get_bin_path,
get_idx_path,
)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="input data")
group.add_argument(
"--input-prefix",
type=str,
required=True,
help="Path to binary input file without suffix",
)
group = parser.add_argument_group(title="output data")
group.add_argument(
"--output-dir",
type=str,
required=True,
help="Directory to output split files",
)
group.add_argument(
"--output-prefix",
type=str,
default="split",
help="Prefix for output files (default: split)",
)
group = parser.add_argument_group(title="split options")
group.add_argument(
"--num-splits",
type=int,
default=None,
help="Number of splits to create. If not provided, will be determined by max-split-size-gb",
)
group.add_argument(
"--max-split-size-gb",
type=float,
default=40.0,
help="Maximum size of each split in GB (default: 40.0)",
)
group.add_argument(
"--split-by-documents",
action="store_true",
help="Split by documents instead of sequences (default: split by sequences)",
)
group = parser.add_argument_group(title="miscellaneous")
group.add_argument(
"--multimodal",
action="store_true",
help="Whether the dataset is assumed to be multimodal"
)
args = parser.parse_args()
# Check input file exists
bin_path = get_bin_path(args.input_prefix)
idx_path = get_idx_path(args.input_prefix)
assert os.path.isfile(bin_path), f"ERROR: {bin_path} does not exist"
assert os.path.isfile(idx_path), f"ERROR: {idx_path} does not exist"
# Check output directory exists
assert os.path.isdir(args.output_dir), f"ERROR: {args.output_dir} is not a directory or does not exist"
return args
def split_by_sequences(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None):
"""Split dataset by sequences, respecting max_split_size_bytes."""
total_sequences = len(dataset)
if total_sequences == 0:
print("Warning: No sequences found in dataset")
return
print(f"Total sequences: {total_sequences}")
split_idx = 0
start_seq_idx = 0
while start_seq_idx < total_sequences:
print(f"Creating split {split_idx + 1}...")
# Create output paths
split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}")
bin_path = get_bin_path(split_prefix)
idx_path = get_idx_path(split_prefix)
# Create builder
builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal)
current_split_size = 0
sequences_in_split = 0
# Determine target number of sequences for this split if num_splits is provided
if num_splits is not None:
sequences_per_split = math.ceil(total_sequences / num_splits)
end_seq_idx_target = min(start_seq_idx + sequences_per_split, total_sequences)
else:
end_seq_idx_target = total_sequences
for seq_idx in range(start_seq_idx, end_seq_idx_target):
sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx]
sequence_size = sequence_length * dataset.index.dtype_size
if sequences_in_split > 0 and current_split_size + sequence_size > max_split_size_bytes:
break
sequence = dataset.bin_reader.read(
dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer
)
import torch
tensor = torch.from_numpy(sequence.copy())
mode = sequence_mode if multimodal else 0
builder.add_item(tensor, mode)
current_split_size += sequence_size
sequences_in_split += 1
# Finalize the split
builder.finalize(idx_path)
end_seq_idx = start_seq_idx + sequences_in_split
print(f"Split {split_idx + 1} completed: sequences {start_seq_idx} to {end_seq_idx - 1} ({sequences_in_split} sequences), size: {current_split_size / (1024**3):.2f} GB")
start_seq_idx = end_seq_idx
split_idx += 1
def split_by_documents(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None):
"""Split dataset by documents, respecting max_split_size_bytes."""
document_indices = dataset.document_indices
total_documents = len(document_indices) - 1
if total_documents == 0:
print("Warning: No documents found in dataset")
return
print(f"Total documents: {total_documents}")
split_idx = 0
start_doc_idx = 0
while start_doc_idx < total_documents:
print(f"Creating split {split_idx + 1}...")
split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}")
bin_path = get_bin_path(split_prefix)
idx_path = get_idx_path(split_prefix)
builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal)
current_split_size = 0
documents_in_split = 0
if num_splits is not None:
docs_per_split = math.ceil(total_documents / num_splits)
end_doc_idx_target = min(start_doc_idx + docs_per_split, total_documents)
else:
end_doc_idx_target = total_documents
for doc_idx in range(start_doc_idx, end_doc_idx_target):
doc_start_seq = document_indices[doc_idx]
doc_end_seq = document_indices[doc_idx + 1]
doc_size = 0
for seq_idx in range(doc_start_seq, doc_end_seq):
_, sequence_length, _ = dataset.index[seq_idx]
doc_size += sequence_length * dataset.index.dtype_size
if documents_in_split > 0 and current_split_size + doc_size > max_split_size_bytes:
break
for seq_idx in range(doc_start_seq, doc_end_seq):
sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx]
sequence = dataset.bin_reader.read(
dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer
)
import torch
tensor = torch.from_numpy(sequence.copy())
mode = sequence_mode if multimodal else 0
builder.add_item(tensor, mode)
builder.end_document()
current_split_size += doc_size
documents_in_split += 1
builder.finalize(idx_path)
end_doc_idx = start_doc_idx + documents_in_split
print(f"Split {split_idx + 1} completed: documents {start_doc_idx} to {end_doc_idx - 1} ({documents_in_split} documents), size: {current_split_size / (1024**3):.2f} GB")
start_doc_idx = end_doc_idx
split_idx += 1
def main():
args = get_args()
print(f"Loading dataset from {args.input_prefix}")
dataset = IndexedDataset(args.input_prefix, multimodal=args.multimodal)
print(f"Dataset loaded: {len(dataset)} sequences")
if args.multimodal:
print(f"Multimodal dataset with {len(dataset.document_indices) - 1} documents")
else:
print(f"Standard dataset with {len(dataset.document_indices) - 1} documents")
max_split_size_bytes = args.max_split_size_gb * 1024 * 1024 * 1024
# If num_splits is provided, check if it respects the max size.
if args.num_splits is not None:
input_bin_path = get_bin_path(args.input_prefix)
total_size_bytes = os.path.getsize(input_bin_path)
size_per_split = total_size_bytes / args.num_splits
if size_per_split > max_split_size_bytes:
print(f"Warning: With {args.num_splits} splits, the average split size would be {size_per_split / (1024**3):.2f} GB, which is larger than the specified max of {args.max_split_size_gb} GB.")
print("The script will create more splits if necessary to respect the size limit.")
if args.split_by_documents:
split_by_documents(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits)
else:
split_by_sequences(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits)
print("Dataset splitting completed!")
if __name__ == '__main__':
main()
|