import os import sys import argparse import math sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) ) from megatron.core.datasets.indexed_dataset import ( IndexedDataset, IndexedDatasetBuilder, get_bin_path, get_idx_path, ) def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title="input data") group.add_argument( "--input-prefix", type=str, required=True, help="Path to binary input file without suffix", ) group = parser.add_argument_group(title="output data") group.add_argument( "--output-dir", type=str, required=True, help="Directory to output split files", ) group.add_argument( "--output-prefix", type=str, default="split", help="Prefix for output files (default: split)", ) group = parser.add_argument_group(title="split options") group.add_argument( "--num-splits", type=int, default=None, help="Number of splits to create. If not provided, will be determined by max-split-size-gb", ) group.add_argument( "--max-split-size-gb", type=float, default=40.0, help="Maximum size of each split in GB (default: 40.0)", ) group.add_argument( "--split-by-documents", action="store_true", help="Split by documents instead of sequences (default: split by sequences)", ) group = parser.add_argument_group(title="miscellaneous") group.add_argument( "--multimodal", action="store_true", help="Whether the dataset is assumed to be multimodal" ) args = parser.parse_args() # Check input file exists bin_path = get_bin_path(args.input_prefix) idx_path = get_idx_path(args.input_prefix) assert os.path.isfile(bin_path), f"ERROR: {bin_path} does not exist" assert os.path.isfile(idx_path), f"ERROR: {idx_path} does not exist" # Check output directory exists assert os.path.isdir(args.output_dir), f"ERROR: {args.output_dir} is not a directory or does not exist" return args def split_by_sequences(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None): """Split dataset by sequences, respecting max_split_size_bytes.""" total_sequences = len(dataset) if total_sequences == 0: print("Warning: No sequences found in dataset") return print(f"Total sequences: {total_sequences}") split_idx = 0 start_seq_idx = 0 while start_seq_idx < total_sequences: print(f"Creating split {split_idx + 1}...") # Create output paths split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}") bin_path = get_bin_path(split_prefix) idx_path = get_idx_path(split_prefix) # Create builder builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal) current_split_size = 0 sequences_in_split = 0 # Determine target number of sequences for this split if num_splits is provided if num_splits is not None: sequences_per_split = math.ceil(total_sequences / num_splits) end_seq_idx_target = min(start_seq_idx + sequences_per_split, total_sequences) else: end_seq_idx_target = total_sequences for seq_idx in range(start_seq_idx, end_seq_idx_target): sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx] sequence_size = sequence_length * dataset.index.dtype_size if sequences_in_split > 0 and current_split_size + sequence_size > max_split_size_bytes: break sequence = dataset.bin_reader.read( dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer ) import torch tensor = torch.from_numpy(sequence.copy()) mode = sequence_mode if multimodal else 0 builder.add_item(tensor, mode) current_split_size += sequence_size sequences_in_split += 1 # Finalize the split builder.finalize(idx_path) end_seq_idx = start_seq_idx + sequences_in_split print(f"Split {split_idx + 1} completed: sequences {start_seq_idx} to {end_seq_idx - 1} ({sequences_in_split} sequences), size: {current_split_size / (1024**3):.2f} GB") start_seq_idx = end_seq_idx split_idx += 1 def split_by_documents(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None): """Split dataset by documents, respecting max_split_size_bytes.""" document_indices = dataset.document_indices total_documents = len(document_indices) - 1 if total_documents == 0: print("Warning: No documents found in dataset") return print(f"Total documents: {total_documents}") split_idx = 0 start_doc_idx = 0 while start_doc_idx < total_documents: print(f"Creating split {split_idx + 1}...") split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}") bin_path = get_bin_path(split_prefix) idx_path = get_idx_path(split_prefix) builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal) current_split_size = 0 documents_in_split = 0 if num_splits is not None: docs_per_split = math.ceil(total_documents / num_splits) end_doc_idx_target = min(start_doc_idx + docs_per_split, total_documents) else: end_doc_idx_target = total_documents for doc_idx in range(start_doc_idx, end_doc_idx_target): doc_start_seq = document_indices[doc_idx] doc_end_seq = document_indices[doc_idx + 1] doc_size = 0 for seq_idx in range(doc_start_seq, doc_end_seq): _, sequence_length, _ = dataset.index[seq_idx] doc_size += sequence_length * dataset.index.dtype_size if documents_in_split > 0 and current_split_size + doc_size > max_split_size_bytes: break for seq_idx in range(doc_start_seq, doc_end_seq): sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx] sequence = dataset.bin_reader.read( dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer ) import torch tensor = torch.from_numpy(sequence.copy()) mode = sequence_mode if multimodal else 0 builder.add_item(tensor, mode) builder.end_document() current_split_size += doc_size documents_in_split += 1 builder.finalize(idx_path) end_doc_idx = start_doc_idx + documents_in_split print(f"Split {split_idx + 1} completed: documents {start_doc_idx} to {end_doc_idx - 1} ({documents_in_split} documents), size: {current_split_size / (1024**3):.2f} GB") start_doc_idx = end_doc_idx split_idx += 1 def main(): args = get_args() print(f"Loading dataset from {args.input_prefix}") dataset = IndexedDataset(args.input_prefix, multimodal=args.multimodal) print(f"Dataset loaded: {len(dataset)} sequences") if args.multimodal: print(f"Multimodal dataset with {len(dataset.document_indices) - 1} documents") else: print(f"Standard dataset with {len(dataset.document_indices) - 1} documents") max_split_size_bytes = args.max_split_size_gb * 1024 * 1024 * 1024 # If num_splits is provided, check if it respects the max size. if args.num_splits is not None: input_bin_path = get_bin_path(args.input_prefix) total_size_bytes = os.path.getsize(input_bin_path) size_per_split = total_size_bytes / args.num_splits if size_per_split > max_split_size_bytes: print(f"Warning: With {args.num_splits} splits, the average split size would be {size_per_split / (1024**3):.2f} GB, which is larger than the specified max of {args.max_split_size_gb} GB.") print("The script will create more splits if necessary to respect the size limit.") if args.split_by_documents: split_by_documents(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits) else: split_by_sequences(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits) print("Dataset splitting completed!") if __name__ == '__main__': main()