---
license: mit
task_categories:
- text-generation
language:
- zh
tags:
- ACG
- animation
size_categories:
- 1K
π Website β’
π€ Hugging Face
δΈζ | English
**ACG-SimpleQA** is an objective knowledge question-answering dataset focused on the Chinese ACG (Animation, Comic, Game) domain, containing **4242** ~~auto-generated~~ carefully designed QA samples. This benchmark aims to evaluate large language models' factual capabilities in the ACG culture domain, featuring Chinese language, diversity, high quality, static answers, and easy evaluation.
## π’ Latest Updates
- **\[2025.04.24\]** We officially release the ACG-SimpleQA dataset! Welcome to download it from π€[Hugging Face](https://huggingface.co/datasets/Papersnake/ACG-SimpleQA)
## π« Introduction
ACG-SimpleQA is a comprehensive benchmark designed to test large language models' factual knowledge in the ACG culture domain. The dataset features:
* π **Chinese**: ACG-SimpleQA focuses on Chinese ACG knowledge, providing a thorough evaluation of LLMs' factual abilities in this area.
* π **Diversity**: Covers multiple subdomains such as anime, games, manga, and music, ensuring comprehensive assessment.
* β‘ **High Quality**: Strict quality control ensures the accuracy of questions and answers.
* π‘ **Static**: All reference answers are time-invariant, and the knowledge cutoff is before 2024, ensuring long-term validity.
* ποΈ **Easy Evaluation**: The evaluation method is consistent with [SimpleQA](https://github.com/openai/simple-evals) and [ChineseSimpleQA](https://github.com/OpenStellarTeam/ChineseSimpleQA).
## π Leaderboard
| Model | ACG-SimpleQA |
|--------------------------------|--------------|
| gemini-2.5-pro-preview-03-25 | 0.5434 |
| gpt-4.5-preview | 0.4884 |
| gemini-2.5-flash-preview-04-17 | 0.3993 |
| deepseek-v3-241226 | 0.3963 |
| deepseek-v3-250324 | 0.3944 |
| gpt-4.1 | 0.3880 |
| grok-3-beta | 0.3810 |
| chatgpt-4o-latest | 0.3758 |
| gemini-2.0-flash-001 | 0.3597 |
| minimax-01 | 0.3175 |
| gemini-2.0-flash-lite-001 | 0.2897 |
| claude-3.7-sonnet | 0.2864 |
| glm-4-plus | 0.2659 |
| claude-3.5-sonnet | 0.2515 |
| qwen-max | 0.2466 |
| doubao-1.5-pro-32k-250115 | 0.2435 |
| grok-3-mini-beta | 0.2357 |
| o4-mini | 0.2263 |
| llama-4-maverick | 0.1655 |
| gpt-4.1-mini | 0.1610 |
| glm-4-air-250414 | 0.1412 |
| claude-3.5-haiku | 0.1334 |
| gemma-3-27b-it | 0.1247 |
| llama-3.3-70b-instruct | 0.1106 |
| qwq-32b | 0.0974 |
| qwen2.5-32b-instruct | 0.0969 |
| gpt-4.1-nano | 0.0957 |
| glm-4-flash-250414 | 0.0700 |
| gemma-3-4b-it | 0.0370 |
## π Citation
If you use this repository in your research, please consider citing:
```bibtex
@misc{pka2025acgsimpleqa,
title={ACG-SimpleQA},
author={Papersnake},
howpublished = {\url{https://github.com/prnake/ACG-SimpleQA}},
year={2025}
}
```