--- license: mit task_categories: - text-generation language: - zh tags: - ACG - animation size_categories: - 1K 🌐 Website β€’ πŸ€— Hugging Face
δΈ­ζ–‡ | English

**ACG-SimpleQA** is an objective knowledge question-answering dataset focused on the Chinese ACG (Animation, Comic, Game) domain, containing **4242** ~~auto-generated~~ carefully designed QA samples. This benchmark aims to evaluate large language models' factual capabilities in the ACG culture domain, featuring Chinese language, diversity, high quality, static answers, and easy evaluation. ## πŸ“’ Latest Updates - **\[2025.04.24\]** We officially release the ACG-SimpleQA dataset! Welcome to download it from πŸ€—[Hugging Face](https://huggingface.co/datasets/Papersnake/ACG-SimpleQA) ## πŸ’« Introduction ACG-SimpleQA is a comprehensive benchmark designed to test large language models' factual knowledge in the ACG culture domain. The dataset features: * πŸ€„ **Chinese**: ACG-SimpleQA focuses on Chinese ACG knowledge, providing a thorough evaluation of LLMs' factual abilities in this area. * πŸ€ **Diversity**: Covers multiple subdomains such as anime, games, manga, and music, ensuring comprehensive assessment. * ⚑ **High Quality**: Strict quality control ensures the accuracy of questions and answers. * πŸ’‘ **Static**: All reference answers are time-invariant, and the knowledge cutoff is before 2024, ensuring long-term validity. * πŸ—‚οΈ **Easy Evaluation**: The evaluation method is consistent with [SimpleQA](https://github.com/openai/simple-evals) and [ChineseSimpleQA](https://github.com/OpenStellarTeam/ChineseSimpleQA). ## πŸ“Š Leaderboard

| Model | ACG-SimpleQA | |--------------------------------|--------------| | gemini-2.5-pro-preview-03-25 | 0.5434 | | gpt-4.5-preview | 0.4884 | | gemini-2.5-flash-preview-04-17 | 0.3993 | | deepseek-v3-241226 | 0.3963 | | deepseek-v3-250324 | 0.3944 | | gpt-4.1 | 0.3880 | | grok-3-beta | 0.3810 | | chatgpt-4o-latest | 0.3758 | | gemini-2.0-flash-001 | 0.3597 | | minimax-01 | 0.3175 | | gemini-2.0-flash-lite-001 | 0.2897 | | claude-3.7-sonnet | 0.2864 | | glm-4-plus | 0.2659 | | claude-3.5-sonnet | 0.2515 | | qwen-max | 0.2466 | | doubao-1.5-pro-32k-250115 | 0.2435 | | grok-3-mini-beta | 0.2357 | | o4-mini | 0.2263 | | llama-4-maverick | 0.1655 | | gpt-4.1-mini | 0.1610 | | glm-4-air-250414 | 0.1412 | | claude-3.5-haiku | 0.1334 | | gemma-3-27b-it | 0.1247 | | llama-3.3-70b-instruct | 0.1106 | | qwq-32b | 0.0974 | | qwen2.5-32b-instruct | 0.0969 | | gpt-4.1-nano | 0.0957 | | glm-4-flash-250414 | 0.0700 | | gemma-3-4b-it | 0.0370 | ## πŸ“œ Citation If you use this repository in your research, please consider citing: ```bibtex @misc{pka2025acgsimpleqa, title={ACG-SimpleQA}, author={Papersnake}, howpublished = {\url{https://github.com/prnake/ACG-SimpleQA}}, year={2025} } ```