Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,8 @@ tags:
|
|
9 |
- aircraft-tracking
|
10 |
- trajectories
|
11 |
- reinforcement-learning
|
|
|
|
|
12 |
size_categories:
|
13 |
- 10K<n<100K
|
14 |
---
|
@@ -16,32 +18,34 @@ size_categories:
|
|
16 |
# TartanAviation ADS-B Dataset (19.7K Clean Samples)
|
17 |
|
18 |
## Dataset Description
|
|
|
19 |
**19,714 high-quality ADS-B trajectory datapoints** from aircraft operations, rigorously cleaned and validated. Perfect for machine learning research in aviation, reinforcement learning, and trajectory prediction.
|
20 |
|
21 |
## Key Features
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
|
28 |
## Dataset Structure (17 columns)
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
|
34 |
## Use Cases
|
35 |
-
-
|
36 |
-
-
|
37 |
-
-
|
38 |
-
-
|
39 |
-
-
|
40 |
|
41 |
## Quick Start
|
|
|
42 |
import pandas as pd
|
43 |
|
44 |
-
Load
|
45 |
df = pd.read_csv('tartanaviation_adsb_19k_clean.csv')
|
46 |
print(f"Dataset shape: {df.shape}")
|
47 |
print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
|
@@ -49,16 +53,22 @@ print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
|
|
49 |
text
|
50 |
|
51 |
## Dataset Stats
|
52 |
-
-
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
-
|
57 |
-
-
|
58 |
|
59 |
## Citation
|
|
|
60 |
@dataset{tartanaviation_adsb_2024,
|
61 |
title={TartanAviation ADS-B Dataset (19.7K Clean Samples)},
|
|
|
62 |
year={2024},
|
63 |
-
publisher={Hugging Face}
|
64 |
-
}
|
|
|
|
|
|
|
|
|
|
9 |
- aircraft-tracking
|
10 |
- trajectories
|
11 |
- reinforcement-learning
|
12 |
+
- tabular-data
|
13 |
+
- time-series
|
14 |
size_categories:
|
15 |
- 10K<n<100K
|
16 |
---
|
|
|
18 |
# TartanAviation ADS-B Dataset (19.7K Clean Samples)
|
19 |
|
20 |
## Dataset Description
|
21 |
+
|
22 |
**19,714 high-quality ADS-B trajectory datapoints** from aircraft operations, rigorously cleaned and validated. Perfect for machine learning research in aviation, reinforcement learning, and trajectory prediction.
|
23 |
|
24 |
## Key Features
|
25 |
+
- 19,714 clean samples (no missing data, no duplicates)
|
26 |
+
- 17 comprehensive features including aircraft ID, timestamp components, altitude, speed, heading, geolocation, and metadata
|
27 |
+
- Data period: January to October 2022
|
28 |
+
- Geographic coverage: Ohio airspace (KBTP airport region)
|
29 |
+
- Formats available: CSV (human-readable) and JSONL (ML-optimized)
|
30 |
|
31 |
## Dataset Structure (17 columns)
|
32 |
+
- Temporal: year, month, day, hour, minute, second
|
33 |
+
- Aircraft State: aircraft_id, altitude_ft, ground_speed_kts, heading_deg
|
34 |
+
- Location: latitude, longitude
|
35 |
+
- Metadata: aircraft_tail, data_age_sec, range_nm, bearing_deg, altitude_is_gnss
|
36 |
|
37 |
## Use Cases
|
38 |
+
- Reinforcement learning for air traffic management
|
39 |
+
- Aircraft trajectory prediction
|
40 |
+
- Graph neural networks modeling
|
41 |
+
- Aviation safety analysis
|
42 |
+
- Time series forecasting for flight dynamics
|
43 |
|
44 |
## Quick Start
|
45 |
+
|
46 |
import pandas as pd
|
47 |
|
48 |
+
Load CSV dataset
|
49 |
df = pd.read_csv('tartanaviation_adsb_19k_clean.csv')
|
50 |
print(f"Dataset shape: {df.shape}")
|
51 |
print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
|
|
|
53 |
text
|
54 |
|
55 |
## Dataset Stats
|
56 |
+
- Samples: 19,714
|
57 |
+
- Features: 17
|
58 |
+
- Unique Aircraft: 4,946
|
59 |
+
- Time Period: January - October 2022
|
60 |
+
- Region: Ohio airspace (KBTP airport area)
|
61 |
+
- Data Quality: 100% complete, validated
|
62 |
|
63 |
## Citation
|
64 |
+
|
65 |
@dataset{tartanaviation_adsb_2024,
|
66 |
title={TartanAviation ADS-B Dataset (19.7K Clean Samples)},
|
67 |
+
author={Pathange},
|
68 |
year={2024},
|
69 |
+
publisher={Hugging Face},
|
70 |
+
url={https://huggingface.co/datasets/Pathange/tartanaviation-adsb-19k-clean}
|
71 |
+
}
|
72 |
+
|
73 |
+
text
|
74 |
+
undefined
|