Pathange commited on
Commit
f7208c0
·
verified ·
1 Parent(s): 6d93516

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -23
README.md CHANGED
@@ -9,6 +9,8 @@ tags:
9
  - aircraft-tracking
10
  - trajectories
11
  - reinforcement-learning
 
 
12
  size_categories:
13
  - 10K<n<100K
14
  ---
@@ -16,32 +18,34 @@ size_categories:
16
  # TartanAviation ADS-B Dataset (19.7K Clean Samples)
17
 
18
  ## Dataset Description
 
19
  **19,714 high-quality ADS-B trajectory datapoints** from aircraft operations, rigorously cleaned and validated. Perfect for machine learning research in aviation, reinforcement learning, and trajectory prediction.
20
 
21
  ## Key Features
22
- - ✅ **19,714 clean samples** - No missing values, no duplicates
23
- - **4,946 unique aircraft** - Excellent diversity for ML training
24
- - **17 comprehensive features** - Complete aircraft state information
25
- - **Realistic aviation values** - Altitude ≤45K ft, Speed ≤600 kts
26
- - **Two formats available** - CSV (human-readable) + JSONL (ML-optimized)
27
 
28
  ## Dataset Structure (17 columns)
29
- - **Temporal**: year, month, day, hour, minute, second
30
- - **Aircraft State**: aircraft_id, altitude_ft, ground_speed_kts, heading_deg
31
- - **Location**: latitude, longitude
32
- - **Metadata**: aircraft_tail, data_age_sec, range_nm, bearing_deg, altitude_is_gnss
33
 
34
  ## Use Cases
35
- - 🚁 **Reinforcement Learning** for air traffic management
36
- - 📈 **Trajectory Prediction** algorithms
37
- - 🕸️ **Graph Neural Networks** with aircraft interactions
38
- - 📊 **Aviation Analytics** and safety research
39
- - ⏱️ **Time Series Forecasting** for flight patterns
40
 
41
  ## Quick Start
 
42
  import pandas as pd
43
 
44
- Load the dataset
45
  df = pd.read_csv('tartanaviation_adsb_19k_clean.csv')
46
  print(f"Dataset shape: {df.shape}")
47
  print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
@@ -49,16 +53,22 @@ print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
49
  text
50
 
51
  ## Dataset Stats
52
- - **Samples**: 19,714
53
- - **Features**: 17
54
- - **Unique Aircraft**: 4,946
55
- - **Time Period**: January - October 2022
56
- - **Region**: Ohio airspace (KBTP airport area)
57
- - **Data Quality**: 100% complete, validated
58
 
59
  ## Citation
 
60
  @dataset{tartanaviation_adsb_2024,
61
  title={TartanAviation ADS-B Dataset (19.7K Clean Samples)},
 
62
  year={2024},
63
- publisher={Hugging Face}
64
- }
 
 
 
 
 
9
  - aircraft-tracking
10
  - trajectories
11
  - reinforcement-learning
12
+ - tabular-data
13
+ - time-series
14
  size_categories:
15
  - 10K<n<100K
16
  ---
 
18
  # TartanAviation ADS-B Dataset (19.7K Clean Samples)
19
 
20
  ## Dataset Description
21
+
22
  **19,714 high-quality ADS-B trajectory datapoints** from aircraft operations, rigorously cleaned and validated. Perfect for machine learning research in aviation, reinforcement learning, and trajectory prediction.
23
 
24
  ## Key Features
25
+ - 19,714 clean samples (no missing data, no duplicates)
26
+ - 17 comprehensive features including aircraft ID, timestamp components, altitude, speed, heading, geolocation, and metadata
27
+ - Data period: January to October 2022
28
+ - Geographic coverage: Ohio airspace (KBTP airport region)
29
+ - Formats available: CSV (human-readable) and JSONL (ML-optimized)
30
 
31
  ## Dataset Structure (17 columns)
32
+ - Temporal: year, month, day, hour, minute, second
33
+ - Aircraft State: aircraft_id, altitude_ft, ground_speed_kts, heading_deg
34
+ - Location: latitude, longitude
35
+ - Metadata: aircraft_tail, data_age_sec, range_nm, bearing_deg, altitude_is_gnss
36
 
37
  ## Use Cases
38
+ - Reinforcement learning for air traffic management
39
+ - Aircraft trajectory prediction
40
+ - Graph neural networks modeling
41
+ - Aviation safety analysis
42
+ - Time series forecasting for flight dynamics
43
 
44
  ## Quick Start
45
+
46
  import pandas as pd
47
 
48
+ Load CSV dataset
49
  df = pd.read_csv('tartanaviation_adsb_19k_clean.csv')
50
  print(f"Dataset shape: {df.shape}")
51
  print(f"Unique aircraft: {df['aircraft_id'].nunique()}")
 
53
  text
54
 
55
  ## Dataset Stats
56
+ - Samples: 19,714
57
+ - Features: 17
58
+ - Unique Aircraft: 4,946
59
+ - Time Period: January - October 2022
60
+ - Region: Ohio airspace (KBTP airport area)
61
+ - Data Quality: 100% complete, validated
62
 
63
  ## Citation
64
+
65
  @dataset{tartanaviation_adsb_2024,
66
  title={TartanAviation ADS-B Dataset (19.7K Clean Samples)},
67
+ author={Pathange},
68
  year={2024},
69
+ publisher={Hugging Face},
70
+ url={https://huggingface.co/datasets/Pathange/tartanaviation-adsb-19k-clean}
71
+ }
72
+
73
+ text
74
+ undefined