RainyNight commited on
Commit
e3f94d5
·
verified ·
1 Parent(s): e6abdc6

Upload 2 files

Browse files
Files changed (2) hide show
  1. augment_fundus_images.py +136 -0
  2. crop_fundus_images.py +120 -0
augment_fundus_images.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ from PIL import Image
4
+ import random
5
+
6
+ from datasets.dataset_split import val_names # List of validation image filenames to exclude
7
+
8
+
9
+ def apply_zoom_in(img, factor):
10
+ """Helper function: Apply center zoom-in effect."""
11
+ original_size = img.size
12
+ new_width = int(original_size[0] / factor)
13
+ new_height = int(original_size[1] / factor)
14
+ left = (original_size[0] - new_width) // 2
15
+ top = (original_size[1] - new_height) // 2
16
+ cropped_img = img.crop((left, top, left + new_width, top + new_height))
17
+ return cropped_img.resize(original_size, Image.Resampling.LANCZOS)
18
+
19
+
20
+ def apply_combo_transform(img, angle, zoom_factor):
21
+ """
22
+ Helper function: Apply combined transform (rotate then zoom).
23
+
24
+ :param img: Input PIL Image object.
25
+ :param angle: Rotation angle in degrees.
26
+ :param zoom_factor: Zoom factor (e.g., 1.2 means 20% zoom-in).
27
+ :return: Transformed PIL Image object.
28
+ """
29
+ original_size = img.size
30
+
31
+ # Step 1: Rotate the image
32
+ rotated_img = img.rotate(angle, resample=Image.BICUBIC, expand=False, fillcolor='black')
33
+
34
+ # Step 2: Center crop to achieve zoom effect
35
+ new_width = int(original_size[0] / zoom_factor)
36
+ new_height = int(original_size[1] / zoom_factor)
37
+ left = (original_size[0] - new_width) // 2
38
+ top = (original_size[1] - new_height) // 2
39
+ right = left + new_width
40
+ bottom = top + new_height
41
+
42
+ cropped_rotated_img = rotated_img.crop((left, top, right, bottom))
43
+
44
+ # Step 3: Resize back to original dimensions
45
+ final_img = cropped_rotated_img.resize(original_size, Image.Resampling.LANCZOS)
46
+ return final_img
47
+
48
+
49
+ def process_images_ultimate(source_folder, output_folder, rotation_angle_range=15, zoom_in_range=(1.05, 1.17)):
50
+ """
51
+ Ultimate data augmentation script: all transforms use independent random parameters.
52
+ - 2x independent random rotations
53
+ - 2x independent random zooms
54
+ - 2x independent random rotation + zoom combinations
55
+ """
56
+ if not os.path.exists(output_folder):
57
+ os.makedirs(output_folder)
58
+ print(f"Created output folder: {output_folder}")
59
+
60
+ supported_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff')
61
+
62
+ for filename in os.listdir(source_folder):
63
+ if filename in val_names: # Skip validation dataset
64
+ continue
65
+
66
+ if not filename.lower().endswith(supported_extensions):
67
+ continue
68
+
69
+ source_path = os.path.join(source_folder, filename)
70
+
71
+ try:
72
+ shutil.copy2(source_path, output_folder)
73
+ print(f"Copied original: {filename}")
74
+ except Exception as e:
75
+ print(f"Error copying file {filename}: {e}")
76
+ continue
77
+
78
+ try:
79
+ with Image.open(source_path) as img:
80
+ name, ext = os.path.splitext(filename)
81
+
82
+ # --- 1. Generate independent random parameters for all transforms ---
83
+ standalone_rot_angle1 = random.uniform(5, rotation_angle_range)
84
+ standalone_rot_angle2 = random.uniform(-rotation_angle_range, -5)
85
+
86
+ standalone_zoom_factor1 = random.uniform(zoom_in_range[0], zoom_in_range[1])
87
+ standalone_zoom_factor2 = random.uniform(zoom_in_range[0], zoom_in_range[1])
88
+
89
+ combo_rot_angle1 = random.uniform(5, rotation_angle_range)
90
+ combo_zoom_factor1 = random.uniform(zoom_in_range[0], zoom_in_range[1])
91
+ combo_rot_angle2 = random.uniform(-rotation_angle_range, -5)
92
+ combo_zoom_factor2 = random.uniform(zoom_in_range[0], zoom_in_range[1])
93
+
94
+ # --- 2. Apply independent rotations (2 images) ---
95
+ for i, angle in enumerate([standalone_rot_angle1, standalone_rot_angle2]):
96
+ rotated_img = img.rotate(angle, resample=Image.BICUBIC, expand=False, fillcolor='black')
97
+ rotated_filename = f"{name}_rot_{i + 1}_{int(angle)}deg{ext}"
98
+ rotated_img.save(os.path.join(output_folder, rotated_filename))
99
+ print(f" -> Created rotated image: {rotated_filename}")
100
+
101
+ # --- 3. Apply independent zooms (2 images) ---
102
+ for i, factor in enumerate([standalone_zoom_factor1, standalone_zoom_factor2]):
103
+ zoomed_img = apply_zoom_in(img, factor)
104
+ zoomed_filename = f"{name}_zoom_{i + 1}_{int(factor * 100)}pct{ext}"
105
+ zoomed_img.save(os.path.join(output_folder, zoomed_filename))
106
+ print(f" -> Created zoomed image: {zoomed_filename}")
107
+
108
+ # --- 4. Apply rotation+zoom combos (2 images) ---
109
+ combo_img1 = apply_combo_transform(img, combo_rot_angle1, combo_zoom_factor1)
110
+ combo_filename1 = f"{name}_combo_{int(combo_rot_angle1)}deg_{int(combo_zoom_factor1 * 100)}pct{ext}"
111
+ combo_img1.save(os.path.join(output_folder, combo_filename1))
112
+ print(f" -> Created combo image: {combo_filename1}")
113
+
114
+ combo_img2 = apply_combo_transform(img, combo_rot_angle2, combo_zoom_factor2)
115
+ combo_filename2 = f"{name}_combo_{int(combo_rot_angle2)}deg_{int(combo_zoom_factor2 * 100)}pct{ext}"
116
+ combo_img2.save(os.path.join(output_folder, combo_filename2))
117
+ print(f" -> Created combo image: {combo_filename2}")
118
+
119
+ except Exception as e:
120
+ print(f"Error processing image {filename}: {e}")
121
+
122
+
123
+ if __name__ == '__main__':
124
+ input_directory = 'csdi_datasets/croped_images'
125
+ output_directory = 'csdi_datasets/croped_augmented_images'
126
+
127
+ if not os.path.isdir(input_directory):
128
+ print(f"Error: input folder '{input_directory}' does not exist or is not a directory.")
129
+ else:
130
+ process_images_ultimate(
131
+ input_directory,
132
+ output_directory,
133
+ rotation_angle_range=15,
134
+ zoom_in_range=(1.05, 1.17)
135
+ )
136
+ print("\nProcessing complete!")
crop_fundus_images.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import argparse
5
+ from tqdm import tqdm
6
+ import csv
7
+
8
+ def crop_and_save_image(input_path, output_path, padding=10):
9
+ """
10
+ Crop a single fundus image to remove black background and save to the specified path.
11
+
12
+ Returns:
13
+ dict: A dictionary containing cropping information, used for writing to CSV.
14
+ """
15
+ try:
16
+ image = cv2.imread(input_path)
17
+ if image is None:
18
+ print(f"Warning: Unable to read image {input_path}, skipped.")
19
+ return None
20
+
21
+ original_h, original_w = image.shape[:2]
22
+
23
+ # Convert to grayscale for thresholding
24
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
25
+ _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
26
+
27
+ # Find contours
28
+ contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
29
+ if not contours:
30
+ print(f"Warning: No contours found in image {input_path}, skipped.")
31
+ return None
32
+
33
+ # Find the largest contour (main fundus region)
34
+ main_contour = max(contours, key=cv2.contourArea)
35
+ x, y, w, h = cv2.boundingRect(main_contour)
36
+
37
+ img_h, img_w = original_h, original_w
38
+ x1 = max(0, x - padding)
39
+ y1 = max(0, y - padding)
40
+ x2 = min(img_w, x + w + padding)
41
+ y2 = min(img_h, y + h + padding)
42
+
43
+ cropped_image = image[y1:y2, x1:x2]
44
+
45
+ # Replace white spots in black background with black
46
+ white_mask = np.all(cropped_image == [255, 255, 255], axis=-1)
47
+ cropped_image[white_mask] = [0, 0, 0]
48
+
49
+ cv2.imwrite(output_path, cropped_image)
50
+
51
+ # Calculate cropped pixels (left, top, right, bottom)
52
+ left_crop = x1
53
+ top_crop = y1
54
+ right_crop = img_w - x2
55
+ bottom_crop = img_h - y2
56
+
57
+ return {
58
+ "filename": os.path.basename(input_path),
59
+ "original_width": original_w,
60
+ "original_height": original_h,
61
+ "left_crop": left_crop,
62
+ "top_crop": top_crop,
63
+ "right_crop": right_crop,
64
+ "bottom_crop": bottom_crop
65
+ }
66
+
67
+ except Exception as e:
68
+ print(f"Error processing file {input_path}: {e}")
69
+ return None
70
+
71
+ def main():
72
+ parser = argparse.ArgumentParser(description="Automatically crop fundus images to remove black background.")
73
+ parser.add_argument('-i', '--input_dir', help="Input directory containing original images.", default="csdi_datasets/original_images")
74
+ parser.add_argument('-o', '--output_dir', help="Output directory for saving cropped images.", default="csdi_datasets/croped_images")
75
+ parser.add_argument('-p', '--padding', type=int, default=0, help="Extra pixel padding around the crop boundary, default 0.")
76
+ parser.add_argument('-c', '--csv_path', type=str, default="crop_info.csv", help="CSV file path to save cropping information, default 'crop_info.csv'.")
77
+
78
+ args = parser.parse_args()
79
+ input_dir = args.input_dir
80
+ output_dir = args.output_dir
81
+ padding = args.padding
82
+ csv_path = args.csv_path
83
+
84
+ if not os.path.isdir(input_dir):
85
+ print(f"Error: Input directory '{input_dir}' does not exist.")
86
+ return
87
+
88
+ os.makedirs(output_dir, exist_ok=True)
89
+ print(f"Cropped images will be saved to: '{output_dir}'")
90
+
91
+ supported_formats = ('.png', '.jpg', '.jpeg', '.bmp', '.tif', '.tiff')
92
+ image_files = [f for f in os.listdir(input_dir) if f.lower().endswith(supported_formats)]
93
+
94
+ if not image_files:
95
+ print(f"No supported image files found in directory '{input_dir}'.")
96
+ return
97
+
98
+ crop_records = []
99
+
100
+ print(f"Found {len(image_files)} images, starting processing...")
101
+ for filename in tqdm(image_files, desc="Processing progress"):
102
+ input_image_path = os.path.join(input_dir, filename)
103
+ output_image_path = os.path.join(output_dir, filename)
104
+
105
+ record = crop_and_save_image(input_image_path, output_image_path, padding)
106
+ if record:
107
+ crop_records.append(record)
108
+
109
+ # Write CSV file
110
+ with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
111
+ fieldnames = ["filename", "original_width", "original_height", "left_crop", "top_crop", "right_crop", "bottom_crop"]
112
+ writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
113
+ writer.writeheader()
114
+ for rec in crop_records:
115
+ writer.writerow(rec)
116
+
117
+ print(f"All images processed! Cropping information saved to '{csv_path}'.")
118
+
119
+ if __name__ == '__main__':
120
+ main()