import cv2 import numpy as np import os import argparse from tqdm import tqdm import csv def crop_and_save_image(input_path, output_path, padding=10): """ Crop a single fundus image to remove black background and save to the specified path. Returns: dict: A dictionary containing cropping information, used for writing to CSV. """ try: image = cv2.imread(input_path) if image is None: print(f"Warning: Unable to read image {input_path}, skipped.") return None original_h, original_w = image.shape[:2] # Convert to grayscale for thresholding gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) # Find contours contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: print(f"Warning: No contours found in image {input_path}, skipped.") return None # Find the largest contour (main fundus region) main_contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(main_contour) img_h, img_w = original_h, original_w x1 = max(0, x - padding) y1 = max(0, y - padding) x2 = min(img_w, x + w + padding) y2 = min(img_h, y + h + padding) cropped_image = image[y1:y2, x1:x2] # Replace white spots in black background with black white_mask = np.all(cropped_image == [255, 255, 255], axis=-1) cropped_image[white_mask] = [0, 0, 0] cv2.imwrite(output_path, cropped_image) # Calculate cropped pixels (left, top, right, bottom) left_crop = x1 top_crop = y1 right_crop = img_w - x2 bottom_crop = img_h - y2 return { "filename": os.path.basename(input_path), "original_width": original_w, "original_height": original_h, "left_crop": left_crop, "top_crop": top_crop, "right_crop": right_crop, "bottom_crop": bottom_crop } except Exception as e: print(f"Error processing file {input_path}: {e}") return None def main(): parser = argparse.ArgumentParser(description="Automatically crop fundus images to remove black background.") parser.add_argument('-i', '--input_dir', help="Input directory containing original images.", default="csdi_datasets/original_images") parser.add_argument('-o', '--output_dir', help="Output directory for saving cropped images.", default="csdi_datasets/croped_images") parser.add_argument('-p', '--padding', type=int, default=0, help="Extra pixel padding around the crop boundary, default 0.") parser.add_argument('-c', '--csv_path', type=str, default="crop_info.csv", help="CSV file path to save cropping information, default 'crop_info.csv'.") args = parser.parse_args() input_dir = args.input_dir output_dir = args.output_dir padding = args.padding csv_path = args.csv_path if not os.path.isdir(input_dir): print(f"Error: Input directory '{input_dir}' does not exist.") return os.makedirs(output_dir, exist_ok=True) print(f"Cropped images will be saved to: '{output_dir}'") supported_formats = ('.png', '.jpg', '.jpeg', '.bmp', '.tif', '.tiff') image_files = [f for f in os.listdir(input_dir) if f.lower().endswith(supported_formats)] if not image_files: print(f"No supported image files found in directory '{input_dir}'.") return crop_records = [] print(f"Found {len(image_files)} images, starting processing...") for filename in tqdm(image_files, desc="Processing progress"): input_image_path = os.path.join(input_dir, filename) output_image_path = os.path.join(output_dir, filename) record = crop_and_save_image(input_image_path, output_image_path, padding) if record: crop_records.append(record) # Write CSV file with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile: fieldnames = ["filename", "original_width", "original_height", "left_crop", "top_crop", "right_crop", "bottom_crop"] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for rec in crop_records: writer.writerow(rec) print(f"All images processed! Cropping information saved to '{csv_path}'.") if __name__ == '__main__': main()