Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
parquet
Sub-tasks:
instance-segmentation
Languages:
English
Size:
1K - 10K
ArXiv:
License:
| from collections.abc import Generator | |
| from pathlib import Path | |
| from typing import Any | |
| import datasets | |
| import numpy as np | |
| from datasets import Dataset | |
| from datasets.splits import NamedSplit | |
| from numpy.typing import NDArray | |
| from PIL import Image | |
| from tqdm import tqdm | |
| tissue_map = { | |
| "Bile-duct": "Bile Duct", | |
| "HeadNeck": "Head & Neck", | |
| "Adrenal_gland": "Adrenal Gland", | |
| } | |
| features = datasets.Features( | |
| { | |
| "image": datasets.Image(mode="RGB"), | |
| "instances": datasets.Sequence(datasets.Image(mode="1")), | |
| "categories": datasets.Sequence( | |
| datasets.ClassLabel( | |
| num_classes=5, | |
| names=[ | |
| "Neoplastic", | |
| "Inflammatory", | |
| "Connective", | |
| "Dead", | |
| "Epithelial", | |
| ], | |
| ) | |
| ), | |
| "tissue": datasets.ClassLabel( | |
| num_classes=19, | |
| names=[ | |
| "Adrenal Gland", | |
| "Bile Duct", | |
| "Bladder", | |
| "Breast", | |
| "Cervix", | |
| "Colon", | |
| "Esophagus", | |
| "Head & Neck", | |
| "Kidney", | |
| "Liver", | |
| "Lung", | |
| "Ovarian", | |
| "Pancreatic", | |
| "Prostate", | |
| "Skin", | |
| "Stomach", | |
| "Testis", | |
| "Thyroid", | |
| "Uterus", | |
| ], | |
| ), | |
| } | |
| ) | |
| def one_hot_mask( | |
| mask: NDArray[np.float64], | |
| ) -> tuple[NDArray[np.bool], NDArray[np.uint8]]: | |
| """Converts a mask to one-hot encoding. | |
| Returns: | |
| A dictionary with the following keys: | |
| - masks: A 3D array with shape (num_masks, height, width) containing the | |
| one-hot encoded masks. | |
| - labels: A 1D array with shape (num_masks,) containing the class labels. | |
| """ | |
| masks: list[NDArray[np.bool]] = [] | |
| labels: list[NDArray[np.uint8]] = [] | |
| for c in range(mask.shape[-1] - 1): | |
| masks.append(mask[..., c] == np.unique(mask[..., c])[1:, None, None]) | |
| labels.append(np.full(masks[-1].shape[0], c, dtype=np.uint8)) | |
| return np.concatenate(masks), np.concatenate(labels) | |
| def process(path: str, subfolder: str) -> Generator[dict[str, Any], None, None]: | |
| images = np.load(Path(path, "images", subfolder, "images.npy"), mmap_mode="r") | |
| masks = np.load(Path(path, "masks", subfolder, "masks.npy"), mmap_mode="r") | |
| types = np.load(Path(path, "images", subfolder, "types.npy")) | |
| for image, mask, tissue in tqdm( | |
| zip(images, masks, types, strict=True), total=len(images) | |
| ): | |
| mask, labels = one_hot_mask(mask) | |
| yield { | |
| "image": Image.fromarray(image.astype(np.uint8)), | |
| "instances": [Image.fromarray(m) for m in mask], | |
| "categories": labels, | |
| "tissue": tissue_map.get(tissue, tissue), | |
| } | |
| if __name__ == "__main__": | |
| fold1 = Dataset.from_generator( | |
| process, | |
| gen_kwargs={"path": "PanNuke/Fold 1", "subfolder": "fold1"}, | |
| features=features, | |
| split=NamedSplit("fold1"), | |
| keep_in_memory=True, | |
| ) | |
| fold1.push_to_hub("RationAI/PanNuke") | |
| fold2 = Dataset.from_generator( | |
| process, | |
| gen_kwargs={"path": "PanNuke/Fold 2", "subfolder": "fold2"}, | |
| features=features, | |
| split=NamedSplit("fold2"), | |
| keep_in_memory=True, | |
| ) | |
| fold2.push_to_hub("RationAI/PanNuke") | |
| fold3 = Dataset.from_generator( | |
| process, | |
| gen_kwargs={"path": "PanNuke/Fold 3", "subfolder": "fold3"}, | |
| features=features, | |
| split=NamedSplit("fold3"), | |
| keep_in_memory=True, | |
| ) | |
| fold3.push_to_hub("RationAI/PanNuke") | |