File size: 6,004 Bytes
6dc0ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34441e2
6dc0ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31cda70
691b7c7
 
6dc0ffe
 
34441e2
6dc0ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
download_swim.py
Streams and downloads the full paired dataset (images + label txt files) from a Hugging Face Hub repository.
It recursively processes all available chunk subfolders (e.g., '000', '001', ...) under given parent paths.
Features:
- Recursively discovers subdirs (chunks) using HfFileSystem
- Optionally flattens the directory structure by removing the deepest chunk level
- Saves each .png image with its corresponding .txt label
Use this script if you want to download the complete dataset for model training or offline access.
Usage:
    # Download all chunks (flattened)
    python utils/download_swim.py --output-dir ./SWiM --flatten
    # Download specific chunks
    python utils/download_swim.py --chunks 000 001 002 --flatten False
Arguments:
    --repo-id          Hugging Face dataset repository ID
    --images-parent    Parent directory for image chunks (e.g., Baseline/images/train)
    --labels-parent    Parent directory for label chunks (e.g., Baseline/labels/train)
    --output-dir       Where to save the downloaded dataset
    --flatten          Remove final 'chunk' subdir in output paths (default: True)
    --chunks           Specific chunk names (e.g., 000 001); omit to download all
"""



import argparse
from io import BytesIO
from pathlib import Path
from huggingface_hub import list_repo_tree, hf_hub_url, HfFileSystem
from huggingface_hub.hf_api import RepoFile
import fsspec
from PIL import Image
from tqdm import tqdm

def enumerate_chunks(repo_id, images_parent):
    """
    Lists all immediate chunk subdirs under the images parent using HfFileSystem.
    Returns sorted list of subdir names (e.g. ['000', '001', ...]).
    """
    fs = HfFileSystem()
    repo_path = f"datasets/{repo_id}/{images_parent}"
    entries = fs.ls(repo_path, detail=True)
    subdirs = [entry['name'].split('/')[-1] for entry in entries if entry['type'] == 'directory']
    subdirs.sort()
    return subdirs

def sample_dataset(
    repo_id: str,
    images_parent: str,
    labels_parent: str,
    output_dir: str,
#    max_files: int = 500,
    flatten: bool,
    chunks: list = None
):
    total_downloaded = 0
    all_chunks = chunks
    if all_chunks is None:
        all_chunks = enumerate_chunks(repo_id, images_parent)
        print(f"Found chunks: {all_chunks}")
    for chunk in all_chunks:
        image_subdir = f"{images_parent}/{chunk}"
        label_subdir = f"{labels_parent}/{chunk}"

        # List only in the specified chunk
        image_files = list_repo_tree(
            repo_id=repo_id,
            path_in_repo=image_subdir,
            repo_type="dataset",
            recursive=True,
        )

        for img_file in tqdm(image_files, desc=f"Downloading {chunk}", leave=False):
            if not isinstance(img_file, RepoFile) or not img_file.path.lower().endswith(".png"):
                continue

            rel_path = Path(img_file.path).relative_to(image_subdir)
            label_path = f"{label_subdir}/{rel_path.with_suffix('.txt')}"

            if flatten:
                parts = img_file.path.split('/')
#                print(parts)
                # Remove the chunk dir (second last)
                flat_path = '/'.join(parts[:-2] + [parts[-1]])
                # For labels, also strip the chunk and substitute extension
                flat_label_path = flat_path.replace('.png', '.txt').replace('images', 'labels')
                local_image_path = Path(output_dir) / flat_path
                local_label_path = Path(output_dir) / flat_label_path
            else:
                local_image_path = Path(output_dir) / img_file.path
                local_label_path = Path(output_dir) / label_path

            local_image_path.parent.mkdir(parents=True, exist_ok=True)
            local_label_path.parent.mkdir(parents=True, exist_ok=True)

            image_url = hf_hub_url(repo_id=repo_id, filename=img_file.path, repo_type="dataset")
            label_url = hf_hub_url(repo_id=repo_id, filename=label_path, repo_type="dataset")
            try:
                with fsspec.open(image_url) as f:
                    image = Image.open(BytesIO(f.read()))
                    image.save(local_image_path)
                with fsspec.open(label_url) as f:
                    txt_content = f.read()
                    with open(local_label_path, "wb") as out_f:
                        out_f.write(txt_content)
                total_downloaded += 1
            except Exception as e:
                print(f"Failed {rel_path}: {e}")




    print(f"Downloaded {total_downloaded} image/txt pairs.")
    print(f"Saved under: {Path(output_dir).resolve()}")

def parse_args():
    parser = argparse.ArgumentParser(description="Stream and sample paired images + txt labels from a Hugging Face folder-structured dataset, optionally across multiple chunks.")
    parser.add_argument("--repo-id", default="RiceD2KLab/SWiM-SpacecraftWithMasks", help="Hugging Face dataset repo ID.")
    parser.add_argument("--images-parent", default="Baseline/images", help="Parent directory for image chunks.")
    parser.add_argument("--labels-parent", default="Baseline/labels", help="Parent directory for label chunks.")
    parser.add_argument("--output-dir", default="./SWiM", help="Where to save sampled data.")
    #parser.add_argument("--count", type=int, default=500, help="How many samples to download in total.")
    parser.add_argument("--flatten",  action='store_true', help="Save all samples in a single folder without subdirectories.")
    parser.add_argument("--chunks", nargs="*", default=None, help="Specific chunk names to sample (e.g. 000 001). Leave empty to process all.")
    return parser.parse_args()

if __name__ == "__main__":
    args = parse_args()
    sample_dataset(
        repo_id=args.repo_id,
        images_parent=args.images_parent,
        labels_parent=args.labels_parent,
        output_dir=args.output_dir,
#        max_files=args.count,
        flatten=args.flatten,
        chunks=args.chunks
    )