|
|
""" |
|
|
sample_swim.py |
|
|
|
|
|
Streams and saves a sample of paired images and labels from a Hugging Face dataset repository. |
|
|
|
|
|
Default configuration: |
|
|
- Repo: "JeffreyJsam/SWiM-SpacecraftWithMasks" |
|
|
- Image subdir: "Baseline/images/val/000" |
|
|
- Label subdir: "Baseline/labels/val/000" |
|
|
- Saves the first 500 matched image/txt files by default. |
|
|
|
|
|
This script is useful for quick local inspection, prototyping, or lightweight evaluation |
|
|
without downloading the full dataset. |
|
|
|
|
|
Usage: |
|
|
python utils/sample_swim.py --output-dir ./samples --count 100 |
|
|
|
|
|
Arguments: |
|
|
--repo-id Hugging Face dataset repository ID |
|
|
--image-subdir Path to image subdirectory inside the dataset repo |
|
|
--label-subdir Path to corresponding label subdirectory |
|
|
--output-dir Directory to save downloaded files |
|
|
--count Number of samples to download |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
from io import BytesIO |
|
|
from pathlib import Path |
|
|
from huggingface_hub import list_repo_tree, hf_hub_url |
|
|
from huggingface_hub.hf_api import RepoFile |
|
|
import fsspec |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
|
|
|
def sample_dataset( |
|
|
repo_id: str, |
|
|
image_subdir: str, |
|
|
label_subdir: str, |
|
|
output_dir: str, |
|
|
max_files: int = 500, |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
image_files = list_repo_tree( |
|
|
repo_id=repo_id, |
|
|
path_in_repo=image_subdir, |
|
|
repo_type="dataset", |
|
|
recursive=True |
|
|
) |
|
|
|
|
|
count = 0 |
|
|
for img_file in tqdm(image_files, desc="Downloading samples"): |
|
|
if not isinstance(img_file, RepoFile) or not img_file.path.lower().endswith((".png")): |
|
|
continue |
|
|
|
|
|
|
|
|
rel_path = Path(img_file.path).relative_to(image_subdir) |
|
|
label_path = f"{label_subdir}/{rel_path.with_suffix('.txt')}" |
|
|
|
|
|
image_url = hf_hub_url(repo_id=repo_id, filename=img_file.path, repo_type="dataset") |
|
|
label_url = hf_hub_url(repo_id=repo_id, filename=label_path, repo_type="dataset") |
|
|
|
|
|
local_image_path = Path(output_dir) / img_file.path |
|
|
local_label_path = Path(output_dir) / label_path |
|
|
|
|
|
local_image_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
local_label_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
try: |
|
|
|
|
|
with fsspec.open(image_url) as f: |
|
|
image = Image.open(BytesIO(f.read())) |
|
|
image.save(local_image_path) |
|
|
|
|
|
|
|
|
with fsspec.open(label_url) as f: |
|
|
txt_content = f.read() |
|
|
with open(local_label_path, "wb") as out_f: |
|
|
out_f.write(txt_content) |
|
|
|
|
|
|
|
|
count += 1 |
|
|
except Exception as e: |
|
|
print(f" Failed {rel_path}: {e}") |
|
|
|
|
|
if count >= max_files: |
|
|
break |
|
|
|
|
|
print(f" Downloaded {count} image/txt pairs.") |
|
|
print(f" Saved under: {Path(output_dir).resolve()}") |
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser(description="Stream and sample paired images + txt labels from a Hugging Face folder-structured dataset.") |
|
|
parser.add_argument("--repo-id", required=False, default = "RiceD2KLab/SWiM-SpacecraftWithMasks",help="Hugging Face dataset repo ID.") |
|
|
parser.add_argument("--image-subdir", required=False, default = "Baseline/images/val/000", help="Subdirectory path for images.") |
|
|
parser.add_argument("--label-subdir", required=False, default="Baseline/labels/val/000", help="Subdirectory path for txt masks.") |
|
|
parser.add_argument("--output-dir", default="./Sampled-SWiM", help="Where to save sampled data.") |
|
|
parser.add_argument("--count", type=int, default=500, help="How many samples to download.") |
|
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
sample_dataset( |
|
|
repo_id=args.repo_id, |
|
|
image_subdir=args.image_subdir, |
|
|
label_subdir=args.label_subdir, |
|
|
output_dir=args.output_dir, |
|
|
max_files=args.count, |
|
|
) |
|
|
|