""" download_swim.py Streams and downloads the full paired dataset (images + label txt files) from a Hugging Face Hub repository. It recursively processes all available chunk subfolders (e.g., '000', '001', ...) under given parent paths. Features: - Recursively discovers subdirs (chunks) using HfFileSystem - Optionally flattens the directory structure by removing the deepest chunk level - Saves each .png image with its corresponding .txt label Use this script if you want to download the complete dataset for model training or offline access. Usage: # Download all chunks (flattened) python utils/download_swim.py --output-dir ./SWiM --flatten # Download specific chunks python utils/download_swim.py --chunks 000 001 002 --flatten False Arguments: --repo-id Hugging Face dataset repository ID --images-parent Parent directory for image chunks (e.g., Baseline/images/train) --labels-parent Parent directory for label chunks (e.g., Baseline/labels/train) --output-dir Where to save the downloaded dataset --flatten Remove final 'chunk' subdir in output paths (default: True) --chunks Specific chunk names (e.g., 000 001); omit to download all """ import argparse from io import BytesIO from pathlib import Path from huggingface_hub import list_repo_tree, hf_hub_url, HfFileSystem from huggingface_hub.hf_api import RepoFile import fsspec from PIL import Image from tqdm import tqdm def enumerate_chunks(repo_id, images_parent): """ Lists all immediate chunk subdirs under the images parent using HfFileSystem. Returns sorted list of subdir names (e.g. ['000', '001', ...]). """ fs = HfFileSystem() repo_path = f"datasets/{repo_id}/{images_parent}" entries = fs.ls(repo_path, detail=True) subdirs = [entry['name'].split('/')[-1] for entry in entries if entry['type'] == 'directory'] subdirs.sort() return subdirs def sample_dataset( repo_id: str, images_parent: str, labels_parent: str, output_dir: str, # max_files: int = 500, flatten: bool = True, chunks: list = None ): total_downloaded = 0 all_chunks = chunks if all_chunks is None: all_chunks = enumerate_chunks(repo_id, images_parent) print(f"Found chunks: {all_chunks}") for chunk in all_chunks: image_subdir = f"{images_parent}/{chunk}" label_subdir = f"{labels_parent}/{chunk}" # List only in the specified chunk image_files = list_repo_tree( repo_id=repo_id, path_in_repo=image_subdir, repo_type="dataset", recursive=True, ) for img_file in tqdm(image_files, desc=f"Downloading {chunk}", leave=False): if not isinstance(img_file, RepoFile) or not img_file.path.lower().endswith(".png"): continue rel_path = Path(img_file.path).relative_to(image_subdir) label_path = f"{label_subdir}/{rel_path.with_suffix('.txt')}" if flatten: parts = img_file.path.split('/') # print(parts) # Remove the chunk dir (second last) flat_path = '/'.join(parts[:-2] + [parts[-1]]) # For labels, also strip the chunk and substitute extension flat_label_path = flat_path.replace('.png', '.txt').replace('images', 'labels') local_image_path = Path(output_dir) / flat_path local_label_path = Path(output_dir) / flat_label_path else: local_image_path = Path(output_dir) / img_file.path local_label_path = Path(output_dir) / label_path local_image_path.parent.mkdir(parents=True, exist_ok=True) local_label_path.parent.mkdir(parents=True, exist_ok=True) image_url = hf_hub_url(repo_id=repo_id, filename=img_file.path, repo_type="dataset") label_url = hf_hub_url(repo_id=repo_id, filename=label_path, repo_type="dataset") try: with fsspec.open(image_url) as f: image = Image.open(BytesIO(f.read())) image.save(local_image_path) with fsspec.open(label_url) as f: txt_content = f.read() with open(local_label_path, "wb") as out_f: out_f.write(txt_content) total_downloaded += 1 except Exception as e: print(f"Failed {rel_path}: {e}") print(f"Downloaded {total_downloaded} image/txt pairs.") print(f"Saved under: {Path(output_dir).resolve()}") def parse_args(): parser = argparse.ArgumentParser(description="Stream and sample paired images + txt labels from a Hugging Face folder-structured dataset, optionally across multiple chunks.") parser.add_argument("--repo-id", default="JeffreyJsam/SWiM-SpacecraftWithMasks", help="Hugging Face dataset repo ID.") parser.add_argument("--images-parent", default="Baseline", help="Parent directory for image chunks.") parser.add_argument("--labels-parent", default="Baseline", help="Parent directory for label chunks.") parser.add_argument("--output-dir", default="./SWiM", help="Where to save sampled data.") #parser.add_argument("--count", type=int, default=500, help="How many samples to download in total.") parser.add_argument("--flatten", default=True, type=bool, help="Save all samples in a single folder without subdirectories.") parser.add_argument("--chunks", nargs="*", default=None, help="Specific chunk names to sample (e.g. 000 001). Leave empty to process all.") return parser.parse_args() if __name__ == "__main__": args = parse_args() sample_dataset( repo_id=args.repo_id, images_parent=args.images_parent, labels_parent=args.labels_parent, output_dir=args.output_dir, # max_files=args.count, flatten=args.flatten, chunks=args.chunks )