import os import datasets from datasets.tasks import ImageClassification """MovingThings: The moving things dataset.""" _HOMEPAGE = "https://github.com/Rivoks" _CITATION = """\ @ONLINE {beansdata, author="Rivoks", title="Moving things dataset", month="August", year="2023", url="https://github.com/Rivoks" } """ _DESCRIPTION = """\ MovingThings is a dataset of images of moving things programmaticaly generated with Stable Diffusion (v1.5). It consists of 5 self movement class: roll, flow, zigzag, walk and linear. Data was annoted by the script that generates the images with the prompt passed to Stable Diffusion. """ _URLS = { "train": "coming soon...", "validation": "coming soon...", "test": "coming soon...", } _NAMES = ["roll", "flow", "zigzag", "walk", "linear"] class Beans(datasets.GeneratorBasedBuilder): """Beans plant leaf images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["train"]]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dl_manager.iter_files([data_files["validation"]]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": dl_manager.iter_files([data_files["test"]]), }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".jpg"): yield i, { "image_file_path": path, "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }