diarray commited on
Commit
c1246c0
·
1 Parent(s): fb58f20

Add scripts from jeli-asr repo

Browse files
scripts/clean_tsv.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ import csv
17
+ import re
18
+ import os
19
+ import sys
20
+ import glob
21
+
22
+ def clean_tsv(input_file : str, output_file: str, revision_file: str) -> None:
23
+ """Generic function
24
+
25
+ Args:
26
+ input_file (str): The path to the tsv file to clean
27
+ output_file (str): The path to the file to save the cleaned rows in. (Typically the same file)
28
+ revision_file (str): The path to the file to save still inconsistent rows in
29
+
30
+ Returns:
31
+ _type_: _description_
32
+ """
33
+ cleaned_rows = []
34
+ revision_rows = []
35
+
36
+ # Helper function to clean the line
37
+ def clean_line(line):
38
+ # Remove unwanted characters
39
+ line = re.sub(r'[<>"]', '', line)
40
+
41
+ # Replace consecutive tabs with a single tab
42
+ line = re.sub(r'\t+', '\t', line)
43
+
44
+ return line
45
+
46
+ # Open the input file and process each row
47
+ with open(input_file, 'r', encoding='utf-8') as infile:
48
+ reader = csv.reader(infile, delimiter='\t')
49
+
50
+ for row in reader:
51
+ # Clean the row
52
+ row = [clean_line(item) for item in row]
53
+
54
+ # If the row has exactly 4 items, ensure the first two are numbers
55
+ if len(row) == 4:
56
+ try:
57
+ # Ensure the first two items are numbers
58
+ # Those values aren't intended for use, simple format check by Exception Catching.
59
+ start_time = int(row[0])
60
+ end_time = int(row[1])
61
+
62
+ # Append the cleaned row
63
+ cleaned_rows.append(row)
64
+ except ValueError:
65
+ # If timestamps are not valid integers, move to revision
66
+ revision_rows.append(row)
67
+ print("One problematic row has been added to revision")
68
+ # If the row has more than 4 items and no consecutive \t, check for \t swapped with space
69
+ elif len(row) > 4:
70
+ row_str = "\t".join(row)
71
+ if ',' in row_str:
72
+ row_str = re.sub(r',\t', ', ', row_str)
73
+ # After fixing spaces, split again and check the length
74
+ row_fixed = row_str.split('\t')
75
+ if len(row_fixed) == 4:
76
+ cleaned_rows.append(row_fixed)
77
+ else:
78
+ revision_rows.append(row_fixed)
79
+ print("One problematic row has been added to revision")
80
+ else:
81
+ # For rows with incorrect number of elements, move to revision
82
+ revision_rows.append(row)
83
+ print("One problematic row has been added to revision")
84
+
85
+ # Write the cleaned rows to the output file
86
+ with open(output_file, 'w', encoding='utf-8', newline='') as outfile:
87
+ writer = csv.writer(outfile, delimiter='\t')
88
+ writer.writerows(cleaned_rows)
89
+ print(f"**** New cleaned tsv file saved at {output_file} ****")
90
+
91
+ if revision_rows:
92
+ # Write the revision rows to the revision file if there are rows to review
93
+ with open(revision_file, 'w', encoding='utf-8', newline='') as revfile:
94
+ writer = csv.writer(revfile, delimiter='\t')
95
+ writer.writerows(revision_rows)
96
+ print(f"**** New revision file saved at {revision_file} ****")
97
+
98
+ if __name__ == "__main__":
99
+ transcription_dir = sys.argv[1]
100
+
101
+ # Ensure revision directory exist
102
+ rev_dir = f'{transcription_dir}/revisions'
103
+ os.makedirs(rev_dir, exist_ok=True)
104
+
105
+ # get the paths to all the tsv files
106
+ tsv_files = glob.glob(transcription_dir + "/*.tsv")
107
+
108
+ for tsv_file in tsv_files:
109
+ in_file = tsv_file
110
+ out_file = in_file
111
+ rev_file = rev_dir + "/" + tsv_file.split("/")[-1][:-4] + "-rev.tsv"
112
+ clean_tsv(input_file=in_file, output_file=out_file, revision_file=rev_file)
scripts/convert_to_mono_channel.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ from pydub import AudioSegment
17
+ import sys
18
+ import json
19
+
20
+ def convert_to_mono(file_path):
21
+ """Convert an audio file to mono if it has multiple channels."""
22
+ audio = AudioSegment.from_file(file_path)
23
+ if audio.channels > 1:
24
+ audio = audio.set_channels(1)
25
+ audio.export(file_path, format="wav")
26
+ print(f"Converted {file_path} to mono.")
27
+
28
+ def check_and_convert_audio_channels(manifest_path):
29
+ """Check the number of channels in audio files and convert to mono if necessary."""
30
+ with open(manifest_path, 'r') as f:
31
+ lines = f.readlines()
32
+
33
+ for line in lines:
34
+ audio_path = json.loads(line)['audio_filepath']
35
+ audio = AudioSegment.from_file(audio_path)
36
+ if audio.channels > 1:
37
+ print(f"{audio_path} is not mono. Converting...")
38
+ convert_to_mono(audio_path)
39
+ else:
40
+ print(f"{audio_path} is already mono.")
41
+
42
+ if __name__ == "__main__":
43
+ if len(sys.argv) != 2:
44
+ print("Usage: python script.py <manifest_path>")
45
+ sys.exit(1)
46
+
47
+ manifest_path = sys.argv[1]
48
+ check_and_convert_audio_channels(manifest_path=manifest_path)
scripts/create_data_manifest.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ ## Imports
17
+ import glob
18
+ import os
19
+ import csv
20
+ import random
21
+ import json
22
+ import shutil
23
+ import sys
24
+ from pydub import AudioSegment
25
+
26
+ # Key callable to sort wav files paths
27
+ def key_sort_paths(path: str) -> int:
28
+ """Serve as key function to sort the wav files paths
29
+
30
+ Args:
31
+ path (str): An individual path
32
+
33
+ Returns:
34
+ int: The number of the split (between 1 and 6)
35
+ """
36
+ return int(path[-5])
37
+
38
+ # Function to read and combine the audios
39
+ def read_audios(glob_paths: list[str]) -> AudioSegment:
40
+ """Read the six 10 mns audio as AudioSegments and returns the combined 1 hr audio
41
+
42
+ Args:
43
+ glob_paths (list[str]): list of the paths of the 6 .wav files
44
+
45
+ Returns:
46
+ AudioSegment: The combined audio
47
+ """
48
+ audios = []
49
+ for wav_file in sorted(glob_paths, key=key_sort_paths):
50
+ audios.append(AudioSegment.from_file(file=wav_file, format="wav"))
51
+ final_audio = sum(audios[1:], start=audios[0])
52
+ return final_audio
53
+
54
+ # A function that reads and return the utterances from .tsv files
55
+ def read_tsv(tsv_file_path: str) -> list[list[int | str]]:
56
+ """Read a .tsv file and return the utterances in it
57
+
58
+ Args:
59
+ tsv_file_path (str): The path to the tsv file
60
+
61
+ Returns:
62
+ list[list[int | str]]: The returned utterances with the timestamps coverted to int
63
+ """
64
+ with open(tsv_file_path,"r", encoding='utf-8') as recording_transcript:
65
+ tsv_file_rows = csv.reader(recording_transcript, delimiter="\t")
66
+ utterances = [[int(start), int(end), bam, french] for start, end, bam, french in tsv_file_rows]
67
+ return utterances
68
+
69
+ # Function to subdivide the audio (transcript) into multiple variable length slices
70
+ def create_var_length_samples(utterances: list[list[int | str]], min_duration: int = 1000,
71
+ max_duration: int = 120000) -> list[list[list[int | str]]]:
72
+ """Create variable length combination of utterances to make samples which duration vary between 1s and 2mns
73
+
74
+ Args:
75
+ utterances (list[list[int | str]]): The read tsv file containing the transcriptions of the audio
76
+ min_duration (int, optional): min duration of a sample in milliseconds. Defaults to 1000.
77
+ max_duration (int, optional): max duration of a sample in milliseconds. Defaults to 120000.
78
+
79
+ Returns:
80
+ list[list[list[int | str]]]: The list of created samples
81
+ """
82
+ samples = []
83
+ current_slice = []
84
+ current_duration = 0
85
+
86
+ i = 0
87
+ while i < len(utterances):
88
+ utterance_start, utterance_end = utterances[i][:2]
89
+ utterance_duration = utterance_end - utterance_start
90
+
91
+ # If current slice duration is less than max duration, add the utterance to this sample
92
+ if current_duration + utterance_duration <= max_duration:
93
+ current_slice.append(utterances[i])
94
+ current_duration += utterance_duration
95
+ i += 1
96
+ else:
97
+ # Save the current sample and reset for a new one
98
+ samples.append(current_slice)
99
+ current_slice = []
100
+ current_duration = 0
101
+
102
+ # Randomly decide whether to end the current sample based on time or number of utterances
103
+ if current_duration >= min_duration:
104
+ if random.choice([True, False, False]) or len(current_slice) >= random.randint(1, 20):
105
+ samples.append(current_slice)
106
+ current_slice = []
107
+ current_duration = 0
108
+
109
+ # Add the final slice if it exists
110
+ if current_slice: # equivalent to if current_slice is empty
111
+ samples.append(current_slice)
112
+
113
+ return samples
114
+
115
+ # Function to create and save the audio samples for a specific list of samples
116
+ def slice_and_save_audios(samples: list[list[list[int | str]]], griot_id: str,
117
+ data_dir: str, audio_dir_path: str) -> list[list[float | str]]:
118
+ """Slice and save the audio samples created for a specific 1hr recording
119
+
120
+ Args:
121
+ samples (list[list[list[int | str]]]): The samples created with function "create_var_length_samples"
122
+ griot_id (str): The ID of the griot in the recording (eg: griots_r17)
123
+ data_dir (str): The directory containing all the data.
124
+ audio_dir_path (str): The diretory the save the sliced audios in.
125
+
126
+ Returns:
127
+ list[list[int | str]]: A list version of manifests (eg: [[audiofile_path, duration, bambara, translation], ...])
128
+ """
129
+ wav_files_paths = glob.glob(f'{data_dir}/{griot_id}/*.wav')
130
+ griot_recording = read_audios(glob_paths=wav_files_paths)
131
+ # A list to store only the data needed to create
132
+ list_manifests = []
133
+
134
+ for sample in samples:
135
+ start = sample[0][0]
136
+ end = sample[-1][1]
137
+ duration = (end - start) / 1000 # in seconds
138
+ # Flag audios with more than 100 seconds
139
+ more_than_100s = " ###" if duration >= 100 else ""
140
+
141
+ # get trancriptions and translations of utterances composing the samples
142
+ transcriptions, translations = [utt[2] for utt in sample], [utt[3] for utt in sample]
143
+ transcription = " ".join(transcriptions)
144
+ translation = " ".join(translations)
145
+
146
+ # create the sample wav file and save it
147
+ audio_file_path = f"{audio_dir_path}/{griot_id}-{start}-{end}.wav"
148
+ griot_recording[start:end].export(out_f=audio_file_path, format="wav")
149
+ print(f"Sample {griot_id}-{start}-{end} saved in {audio_file_path}{more_than_100s}")
150
+
151
+ # Create the manifest list and save it
152
+ list_manifests.append([audio_file_path, duration, transcription, translation])
153
+ return list_manifests
154
+
155
+ # A function to shuffle and split samples
156
+ def shuffle_and_split(dataset: list[list[float | str]],
157
+ test: int | float = 0.15) -> tuple[list[list[float | str]]]:
158
+ """Shuffle and split the whole dataset
159
+
160
+ Args:
161
+ dataset (list[list[int | str]]): The combined list of all list manifest returned by "slice_and_save_audios"
162
+ test (int | float, optional): The number of sample to include that make the test set or and percentage of the whole dataset to use as the test set. Defaults to 0.15.
163
+
164
+ Returns:
165
+ tuple[list[list[list[int | str]]]]: The train and test sets samples returned separately
166
+ """
167
+ random.shuffle(dataset)
168
+ if isinstance(test, float):
169
+ test = int(test * len(dataset))
170
+ test_set_samples = dataset[0:test]
171
+ train_set_samples = dataset[test:]
172
+ return train_set_samples, test_set_samples
173
+
174
+ # A function to create audio sample files and manifests
175
+ def create_manifest(dataset_split: list[list[float | str]], split_name: str,
176
+ dir_path: str) -> None:
177
+ """Create manifest files
178
+
179
+ Args:
180
+ dataset_split (list[list[float | str]]): Split of the dataset to create manifest for
181
+ split_name (str): Name of the split
182
+ dir_path (str): The directory to save the new data manifest in
183
+ """
184
+ # Ensure directories for manifests and audios
185
+ os.makedirs(f'{dir_path}/manifests', exist_ok=True)
186
+ os.makedirs(f'{dir_path}/french-manifests', exist_ok=True)
187
+ os.makedirs(f'{dir_path}/audios/{split_name}', exist_ok=True)
188
+
189
+ # Define manifest file paths
190
+ manifest_path = f'{dir_path}/manifests/{split_name}_manifest.json'
191
+ french_manifest_path = f'{dir_path}/french-manifests/{split_name}_french_manifest.json'
192
+ audio_dir_path = f'{dir_path}/audios/{split_name}'
193
+
194
+ with open(manifest_path, 'w', encoding="utf-8") as manifest_file, open(french_manifest_path, 'w', encoding="utf-8") as french_file:
195
+ for sample in dataset_split:
196
+ # move the audio sample file in the corresponding split directory
197
+ new_audio_path = f'{audio_dir_path}/{sample[0].split("/")[-1]}'
198
+ shutil.move(src=sample[0], dst=new_audio_path)
199
+
200
+ # Prepare the manifest line
201
+ manifest_line = {
202
+ "audio_filepath": os.path.relpath(new_audio_path),
203
+ "duration": sample[1],
204
+ "text": sample[2] # Bambara transcription goes to the text field
205
+ }
206
+
207
+ french_manifest_line = {
208
+ "audio_filepath": os.path.relpath(new_audio_path),
209
+ "duration": sample[1],
210
+ "text": sample[3]
211
+ }
212
+
213
+ # Write manifest files
214
+ manifest_file.write(json.dumps(manifest_line) + '\n')
215
+ french_file.write(json.dumps(french_manifest_line) + '\n')
216
+ print(f"{split_name} manifests files have been created successfully!\nCorresponding audios files have been moved to {audio_dir_path}")
217
+
218
+ if __name__ == "__main__":
219
+ data_path = sys.argv[1]
220
+ manifest_dir = sys.argv[2]
221
+ tsv_dir = f'{data_path}/aligned-transcriptions'
222
+
223
+ # Get all the revised transcription files in .tsv format
224
+ tsv_paths = glob.glob(f'{tsv_dir}/*.tsv')
225
+ # list to store the list manifests per griots
226
+ final_list_manifest = []
227
+ for tsv_file in tsv_paths:
228
+ id_griot = tsv_file.split("/")[-1][:-4]
229
+ griot_utterances = read_tsv(tsv_file_path=tsv_file)
230
+ # Get samples (can be made of one or more utterances)
231
+ griot_samples = create_var_length_samples(utterances=griot_utterances)
232
+ list_manifest = slice_and_save_audios(samples=griot_samples, griot_id=id_griot,
233
+ data_dir=data_path, audio_dir_path=f'{manifest_dir}/audios')
234
+ final_list_manifest.append(list_manifest)
235
+ # Get a single list manifest for all the samples
236
+ final_list_manifest = sum(final_list_manifest, start=[])
237
+ # Shuffle and split the final list of all sample,manifests
238
+ train_set, test_set = shuffle_and_split(dataset=final_list_manifest, test=0.15) # Use 15% of the dataset for test
239
+ print(f'len(train_set) == {len(train_set)} and len(test_set) == {len(test_set)}')
240
+
241
+ create_manifest(dataset_split=train_set, split_name="train", dir_path=manifest_dir)
242
+ create_manifest(dataset_split=test_set, split_name="test", dir_path=manifest_dir)
scripts/create_manifest_oza_bam_asr.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ from datasets import load_dataset
17
+ from huggingface_hub import login
18
+ import os
19
+ import json
20
+ import soundfile as sf
21
+ import numpy as np
22
+
23
+ # Log in to Hugging Face
24
+ login()
25
+
26
+ # Load the clean subset of the dataset
27
+ oza_bam_asr_clean = load_dataset("oza75/bambara-asr", name="clean")
28
+
29
+ # Define root directory for the Nemo version
30
+ root_dir = "oza-bam-asr-clean"
31
+ os.makedirs(root_dir, exist_ok=True)
32
+ os.makedirs(f"{root_dir}/audios", exist_ok=True)
33
+ os.makedirs(f"{root_dir}/manifests", exist_ok=True)
34
+ os.makedirs(f"{root_dir}/french-manifests", exist_ok=True)
35
+
36
+ def save_audio_and_create_manifest(datasets, manifest_path, french_manifest_path):
37
+ total_duration = 0
38
+ with open(manifest_path, "w", encoding="utf-8") as manifest_file, open(french_manifest_path, "w", encoding="utf-8") as french_file:
39
+ idx = 0
40
+ for dataset in datasets:
41
+ for example in dataset:
42
+ # Save audio to .wav file
43
+ audio_path = f"{root_dir}/audios/oza75-bam-asr-{idx}.wav"
44
+ sf.write(audio_path, np.array(example['audio']['array']), example['audio']['sampling_rate'])
45
+
46
+ # Calculate duration and accumulate
47
+ duration = example['duration']
48
+ total_duration += duration
49
+
50
+ # Create manifest entries
51
+ manifest_entry = {
52
+ "audio_filepath": os.path.relpath(audio_path),
53
+ "duration": duration,
54
+ "text": example['bambara'].lower()
55
+ }
56
+ french_manifest_entry = {
57
+ "audio_filepath": os.path.relpath(audio_path),
58
+ "duration": duration,
59
+ "text": example['french'].lower()
60
+ }
61
+
62
+ # Write to manifest files
63
+ manifest_file.write(json.dumps(manifest_entry, ensure_ascii=False) + "\n")
64
+ french_file.write(json.dumps(french_manifest_entry, ensure_ascii=False) + "\n")
65
+
66
+ idx += 1
67
+
68
+ return total_duration
69
+
70
+ if __name__ == "__main__":
71
+ # Combine train and test sets into one
72
+ total_duration = save_audio_and_create_manifest(
73
+ [oza_bam_asr_clean['train'], oza_bam_asr_clean['test']],
74
+ f"{root_dir}/manifests/train_manifest.json",
75
+ f"{root_dir}/french-manifests/train_french_manifest.json"
76
+ )
77
+
78
+ # Convert duration to hours
79
+ total_hours = total_duration / 3600
80
+
81
+ # Print the result
82
+ print(f"Created Nemo manifest for 'oza75/bambara-asr' totalling {total_hours:.2f} hours of audio.")
scripts/filter_silent_and_inaudible.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ import librosa
17
+ import json
18
+ import numpy as np
19
+
20
+ # Get the mean mel energy for of a silent audio to better tune the params in flag_silent_audio_mel
21
+ def get_mel_energy(audio_path, n_mels=80, frame_duration=0.025):
22
+ """
23
+ Computes the average Mel-frequency energy of an audio file.
24
+
25
+ Args:
26
+ audio_path (str): Path to the audio file.
27
+
28
+ Returns:
29
+ float: Average Mel-frequency energy.
30
+ """
31
+ # Load audio
32
+ y, sr = librosa.load(audio_path, sr=None)
33
+
34
+ # Compute frame length in samples
35
+ frame_length = int(frame_duration * sr)
36
+ hop_length = frame_length # No overlap for simplicity
37
+
38
+ # Compute Mel spectrogram
39
+ mel_spectrogram = librosa.feature.melspectrogram(
40
+ y=y, sr=sr, n_mels=n_mels, hop_length=hop_length, power=2.0
41
+ )
42
+
43
+ # Compute average energy for each frame
44
+ mel_energies = np.mean(mel_spectrogram, axis=0)
45
+
46
+ # Normalize energy
47
+ mel_energies /= np.max(mel_energies) # Normalize to [0, 1]
48
+
49
+ return np.mean(mel_energies)
50
+
51
+ def flag_silent_audio_mel(manifest_path, mel_energy_threshold=0.001, speech_fraction=0.2, n_mels=80, frame_duration=0.025):
52
+ """
53
+ Flags audio files with little or no speech based on Mel-frequency energy.
54
+
55
+ Args:
56
+ manifest_path (str): Path to the manifest file.
57
+ mel_energy_threshold (float): Threshold for Mel-frequency energy to consider a frame as containing speech.
58
+ speech_fraction (float): Minimum fraction of frames required to classify as speech.
59
+ n_mels (int): Number of Mel bands to use for the Mel spectrogram.
60
+ frame_duration (float): Duration of each frame in seconds.
61
+
62
+ Returns:
63
+ list: A list of audio filepaths flagged as silent or low-energy.
64
+ """
65
+ silent_audio_files = []
66
+
67
+ with open(manifest_path, 'r', encoding='utf-8') as f:
68
+ manifest = [json.loads(line.strip()) for line in f]
69
+
70
+ for entry in manifest:
71
+ audio_path = entry['audio_filepath']
72
+ try:
73
+ # Load audio
74
+ y, sr = librosa.load(audio_path, sr=None)
75
+
76
+ # Compute frame length in samples
77
+ frame_length = int(frame_duration * sr)
78
+ hop_length = frame_length # No overlap for simplicity
79
+
80
+ # Compute Mel spectrogram
81
+ mel_spectrogram = librosa.feature.melspectrogram(
82
+ y=y, sr=sr, n_mels=n_mels, hop_length=hop_length, power=2.0
83
+ )
84
+
85
+ # Compute average energy for each frame
86
+ mel_energies = np.mean(mel_spectrogram, axis=0)
87
+
88
+ # Normalize energy
89
+ mel_energies /= np.max(mel_energies) # Normalize to [0, 1]
90
+
91
+ # Count frames above the threshold
92
+ speech_frames = np.sum(mel_energies > mel_energy_threshold)
93
+ total_frames = len(mel_energies)
94
+
95
+ # Classify as silent if speech fraction is below threshold
96
+ if speech_frames / total_frames < speech_fraction:
97
+ print(f"Audio file {audio_path} is classified as silent.")
98
+ silent_audio_files.append(audio_path)
99
+ except Exception as e:
100
+ print(f"Error processing file {audio_path}: {e}")
101
+
102
+ return silent_audio_files
103
+
104
+ def remove_silent_audio_from_manifest(manifest_path, silent_audio_files, output_manifest_path):
105
+ """
106
+ Removes entries of flagged audio files from the manifest.
107
+
108
+ Args:
109
+ manifest_path (str): Path to the input manifest file.
110
+ silent_audio_files (list): List of audio filepaths flagged as silent or low-energy.
111
+ output_manifest_path (str): Path to save the filtered manifest.
112
+
113
+ Returns:
114
+ None
115
+ """
116
+ with open(manifest_path, 'r', encoding='utf-8') as f:
117
+ manifest = [json.loads(line.strip()) for line in f]
118
+
119
+ # Filter out silent audio files
120
+ filtered_manifest = [entry for entry in manifest if entry['audio_filepath'] not in silent_audio_files]
121
+
122
+ # Write the filtered manifest to the output file
123
+ with open(output_manifest_path, 'w', encoding='utf-8') as f:
124
+ for entry in filtered_manifest:
125
+ f.write(json.dumps(entry) + '\n')
126
+
127
+ print(f"Filtered manifest saved to {output_manifest_path}")
128
+
129
+ if __name__ =="__main__":
130
+ import sys
131
+
132
+ if len(sys.argv) != 2:
133
+ print("Usage: python script.py <manifest_path>")
134
+ sys.exit(1)
135
+
136
+ manifest_path = sys.argv[1]
137
+ silent_audio_files = flag_silent_audio_mel(manifest_path)
138
+ output_manifest_path = manifest_path.replace(".json", "_filtered.json")
139
+ remove_silent_audio_from_manifest(manifest_path, silent_audio_files, output_manifest_path)
140
+
scripts/lower_transcriptions_in_manifests.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copyright 2024 RobotsMali AI4D Lab.
3
+
4
+ Licensed under the Creative Commons Attribution 4.0 International License (the "License");
5
+ you may not use this file except in compliance with the License.
6
+ You may obtain a copy of the License at
7
+
8
+ https://creativecommons.org/licenses/by/4.0/
9
+
10
+ Unless required by applicable law or agreed to in writing, software
11
+ distributed under the License is distributed on an "AS IS" BASIS,
12
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ See the License for the specific language governing permissions and
14
+ limitations under the License.
15
+ """
16
+ import json
17
+ import os
18
+
19
+ # Hardcoded paths for the manifest files
20
+ manifest_paths = {
21
+ "train_bambara": "jeli-data-manifest/manifests/train_manifest.json",
22
+ "test_bambara": "jeli-data-manifest/manifests/test_manifest.json",
23
+ "train_french": "jeli-data-manifest/french-manifests/train_french_manifest.json",
24
+ "test_french": "jeli-data-manifest/french-manifests/test_french_manifest.json",
25
+ }
26
+
27
+ # Directory to save the lowercase transcriptions
28
+ output_dir = "lower-case-transcriptions"
29
+ os.makedirs(output_dir, exist_ok=True)
30
+
31
+ # Function to process a manifest file
32
+ def lowercase_manifest(input_path, output_path):
33
+ """Convert all transcriptions in a manifest file to lowercase."""
34
+ with open(input_path, "r", encoding="utf-8") as infile, open(output_path, "w", encoding="utf-8") as outfile:
35
+ for line in infile:
36
+ entry = json.loads(line)
37
+ entry["text"] = entry["text"].lower()
38
+ outfile.write(json.dumps(entry, ensure_ascii=False) + "\n")
39
+
40
+ # Process each manifest file
41
+ for key, input_path in manifest_paths.items():
42
+ output_path = os.path.join(output_dir, os.path.basename(input_path))
43
+ lowercase_manifest(input_path, output_path)
44
+ print(f"Processed {input_path} and saved to {output_path}")
45
+
46
+ print("All manifest files have been processed.")