Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Spanish
Libraries:
Datasets
pandas
License:
File size: 11,419 Bytes
396b136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cc94be
0172e34
9cc94be
 
 
 
 
396b136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faa201
396b136
 
 
 
9faa201
396b136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
!pip install PyPDF2 google google-genai requests python-dotenv datasets huggingface_hub

"""# Libraries"""

import os
import requests
import json
from bs4 import BeautifulSoup
import PyPDF2
from google import genai
from google.genai import types
from dotenv import load_dotenv
import pandas as pd
from datasets import Dataset
from huggingface_hub import login

"""# Configure apikey"""
# TODO: Add your own apikey
load_dotenv()
GEMINI_API_KEY = ""
HF_TOKEN= ""
HF_DATASET_NAME=""

"""# Get files"""

# Main page URL
main_url = 'https://www.sspa.juntadeandalucia.es/servicioandaluzdesalud/profesionales/ofertas-de-empleo/oferta-de-empleo-publico-puestos-base/oep-extraordinaria-decreto-ley-122022-centros-sas/cuadro-de-evolucion-concurso-oposicion-centros-sas'

# Main folder where exams will be saved
exams_folder = "exams"
os.makedirs(exams_folder, exist_ok=True)

# Perform an HTTP GET request to the main page
main_response = requests.get(main_url)

if main_response.status_code == 200:
    main_soup = BeautifulSoup(main_response.content, 'html.parser')

    # Find all tables on the main page
    tables = main_soup.find_all('table')

    for table in tables:
        links = table.find_all('a', href=True)
        for link in links:
            secondary_url = link['href']
            if secondary_url.startswith('/'):
                secondary_url = 'https://www.sspa.juntadeandalucia.es' + secondary_url

            folder_name = link.text.strip().replace("/", "-")  # Replace invalid characters
            folder_path = os.path.join(exams_folder, folder_name)
            os.makedirs(folder_path, exist_ok=True)

            secondary_response = requests.get(secondary_url)
            if secondary_response.status_code == 200:
                secondary_soup = BeautifulSoup(secondary_response.content, 'html.parser')
                secondary_tables = secondary_soup.find_all('table')

                for secondary_table in secondary_tables:
                    exam_booklet_links = secondary_table.find_all('a', title='Cuadernillo de Examen', href=True)
                    answer_sheet_links = secondary_table.find_all('a', title='Plantilla de respuestas', href=True)

                    for exam_booklet_link in exam_booklet_links:
                        pdf_url = exam_booklet_link['href']
                        if pdf_url.startswith('/'):
                            pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url
                        pdf_response = requests.get(pdf_url)
                        if pdf_response.status_code == 200:
                            file_path = os.path.join(folder_path, 'Exam_Booklet.pdf')
                            with open(file_path, 'wb') as pdf_file:
                                pdf_file.write(pdf_response.content)
                            print(f'Exam Booklet saved at: {file_path}')

                    for answer_sheet_link in answer_sheet_links:
                        pdf_url = answer_sheet_link['href']
                        if pdf_url.startswith('/'):
                            pdf_url = 'https://www.sspa.juntadeandalucia.es' + pdf_url
                        pdf_response = requests.get(pdf_url)
                        if pdf_response.status_code == 200:
                            file_path = os.path.join(folder_path, 'Answer_Sheet.pdf')
                            with open(file_path, 'wb') as pdf_file:
                                pdf_file.write(pdf_response.content)
                            print(f'Answer Sheet saved at: {file_path}')

else:
    print(f'Error accessing the main page: {main_response.status_code}')

"""# PDF processing

## Extract text
"""

def extract_text_from_pdf(pdf_path: str) -> str:
    with open(pdf_path, "rb") as file:
        reader = PyPDF2.PdfReader(file)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
    return text

"""## Number of questions"""

import base64
import os
from google import genai
from google.genai import types


def generate_number_questions(text):
    client = genai.Client(
        api_key=GEMINI_API_KEY,
    )

    model = "gemini-2.0-flash"
    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text=f"""tell me how many questions you have in format {{"number": "numberofquestionsinteger"}} in the following text: {text}"""),
            ],
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_mime_type="application/json",
    )
    response = client.models.generate_content(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    return response.candidates[0].content.parts[0].text

"""## Process with llm"""

import json
import os
from google import genai
from google.genai import types

def process_with_gemini(text: str, start: int, end: int):
    client = genai.Client(
        api_key=GEMINI_API_KEY
    )

    model = "gemini-2.0-flash"
    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text=f"""
Given the following text of an exam with questions and answers, extract each question and its possible answers.
Format the output as a list of JSON with the following format, I want you to extract questions from {start} to {end}:


{{{{"question number in integer format": {{"statement": "question text", "answers": ["option A", "option B", ...]}}}}}}

Exam text:
{text}
                """),
            ],
        ),
    ]

    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=32768,
        response_mime_type="application/json",
    )

    # Use generate_content() instead of streaming
    response = client.models.generate_content(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    return response.text  # Return the response instead of printing it

"""# Collect the questions"""

import json
import os
from google import genai
from google.genai import types

def process_answers_with_gemini(text: str):
    client = genai.Client(
        api_key=GEMINI_API_KEY
    )

    model = "gemini-2.0-flash"
    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text=f"""
Please return the question number and the correct answers in format ['question number': 'answer letter','question number': 'answer letter'] from the following text
{text}
                """),
            ],
        ),
    ]

    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=32768,
        response_mime_type="application/json",
    )

    # Use generate_content() instead of streaming
    response = client.models.generate_content(
        model=model,
        contents=contents,
        config=generate_content_config,
    )

    return response.text  # Return the response instead of printing it

def process_pdf_file(pdf_path: str, answers_pdf_path: str, theme: str) -> pd.DataFrame:
    pdf_text = extract_text_from_pdf(pdf_path)
    result = generate_number_questions(pdf_text)
    question_text = extract_text_from_pdf(answers_pdf_path)

    # Process number of questions
    try:
        result_dict = json.loads(result)
    except json.JSONDecodeError:
        print("Error: The question count response is not valid JSON.")
        return pd.DataFrame()

    question_count = result_dict.get("number", "unknown")
    print(f"The exam {pdf_path} contains {question_count} questions.")

    try:
        question_count = int(result_dict.get("number", 0))
    except ValueError:
        print(f"Error: Could not convert question count '{question_count}' to integer.")
        return pd.DataFrame()

    # Process questions in batches
    questions = []
    batch_size = 50
    for start in range(1, question_count + 1, batch_size):
        end = min(start + batch_size - 1, question_count)
        print(f"Processing questions from {pdf_path} {start}-{end}...")
        questions_subset = process_with_gemini(pdf_text, start, end)
        questions.append(questions_subset)


    # Combine all processed question batches
    all_questions = []
    for question_set in questions:
        try:
            question_list = json.loads(question_set)
            all_questions.extend(question_list)
        except json.JSONDecodeError:
            print(f"Error: A question batch response is not valid JSON.")
            continue

    # If no valid questions were processed, return empty DataFrame
    if not all_questions:
        print("Error: No valid questions were processed.")
        return pd.DataFrame()

    # Process questions answers
    questions_answer = process_answers_with_gemini(question_text)
    try:
        json_questions_answers = json.loads(questions_answer)
    except json.JSONDecodeError:
        print("Error: The response is not a valid JSON.")

    # Format the data for the DataFrame
    processed_data = []
    for item in all_questions:
        for key, value in item.items():
            try:
              correct_answer = json_questions_answers[0].get(str(key), "Not available")
              processed_data.append({
                  'id': key,
                  'statement': value['statement'],
                  'answers': value['answers'],
                  'correct_answer': correct_answer,
                  'theme': theme
              })
            except KeyError as e:
                print(f"Error: Missing key in question data: {e}")
                # Skip this question but continue with others
                continue

    # Create DataFrame from dictionary list
    df = pd.DataFrame(processed_data)
    if not df.empty:
        df.set_index('id', inplace=True)

    return df


all_df_array = []
# Verify that the folder exists
if os.path.exists(exams_folder):
    for folder_name in os.listdir(exams_folder):
        folder_path = os.path.join(exams_folder, folder_name)

        # Verify that it's a folder
        if os.path.isdir(folder_path):
            print(f"Processing: {folder_name}")

            files = os.listdir(folder_path)

            # Initialize question and answer paths
            questions_path = None
            answers_path = None

            # Look for files that start with the desired prefixes
            for file in files:
                if file.startswith('Exam_Booklet') and not questions_path:
                    questions_path = os.path.join(folder_path, file)
                elif file.startswith('Answer_Sheet') and not answers_path:
                    answers_path = os.path.join(folder_path, file)
            exam_df = process_pdf_file(questions_path, answers_path, folder_name)
            if not exam_df.empty:
                all_df_array.append(exam_df)

if all_df_array:
    df = pd.concat(all_df_array, ignore_index=True)  # `ignore_index=True` to avoid duplicates in the index
    print(f"Final DataFrame with all questions and answers:\n{df}")
else:
    print("No valid DataFrames were generated.")

"""# Upload to huggingface"""

login(HF_TOKEN)
Dataset.from_pandas(df).push_to_hub(HF_DATASET_NAME)