|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The Aya Dataset is a multilingual instruction fine-tuning dataset curated by an open-science community via Aya Annotation Platform from Cohere For AI. The dataset contains a total of 204k human-annotated prompt-completion pairs along with the demographics data of the annotators. This dataset can be used to train, finetune, and evaluate multilingual LLMs. |
|
""" |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{singh2024aya, |
|
title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning}, |
|
author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer and Ahmet Üstün and Marzieh Fadaee and Sara Hooker}, |
|
year={2024}, |
|
eprint={2402.06619}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "aya_dataset" |
|
|
|
_DESCRIPTION = """\ |
|
The Aya Dataset is a multilingual instruction fine-tuning dataset curated by an open-science community via Aya Annotation Platform from Cohere For AI. The dataset contains a total of 204k human-annotated prompt-completion pairs along with the demographics data of the annotators. This dataset can be used to train, finetune, and evaluate multilingual LLMs. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/CohereForAI/aya_dataset" |
|
|
|
_LANGUAGES = ["ceb", "ind", "jav", "mya", "tam", "fil", "sun", "tha", "vie", "zsm"] |
|
|
|
_LICENSE = Licenses.APACHE_2_0.value |
|
|
|
_LOCAL = False |
|
|
|
|
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/CohereForAI/aya_dataset/resolve/main/data/train-00000-of-00001.parquet", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_SEACROWD_SCHEMA = "seacrowd_t2t" |
|
|
|
|
|
def _aya_config_constructor(lang: str, schema: str, version: str) -> SEACrowdConfig: |
|
return SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_{schema}", |
|
version=version, |
|
description=f"Aya Dataset {schema} schema", |
|
schema=schema, |
|
subset_id=f"Aya {lang}", |
|
) |
|
|
|
|
|
class AyaDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The Aya Dataset is a multilingual instruction fine-tuning dataset curated by an open-science community via Aya Annotation Platform from Cohere For AI. The dataset contains a total of 204k human-annotated prompt-completion pairs along with the demographics data of the annotators. This dataset can be used to train, finetune, and evaluate multilingual LLMs. |
|
|
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
def _populate_configs(): |
|
configs = [_aya_config_constructor(lang, "source", _SOURCE_VERSION) for lang in _LANGUAGES] + [_aya_config_constructor(lang, _SEACROWD_SCHEMA, _SEACROWD_VERSION) for lang in _LANGUAGES] |
|
|
|
all_lang_source_config = SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=_SOURCE_VERSION, |
|
description="Aya Dataset source schema", |
|
schema="source", |
|
subset_id="Aya", |
|
) |
|
|
|
all_lang_t2t_config = SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}", |
|
version=_SEACROWD_VERSION, |
|
description=f"Aya Dataset {_SEACROWD_SCHEMA} schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id="Aya", |
|
) |
|
|
|
configs.append(all_lang_source_config) |
|
configs.append(all_lang_t2t_config) |
|
return configs |
|
|
|
BUILDER_CONFIGS = _populate_configs() |
|
|
|
DEFAULT_CONFIG_NAME = "aya_dataset_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"inputs": datasets.Value("string"), |
|
"targets": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"language_code": datasets.Value("string"), |
|
"annotation_type": datasets.Value("string"), |
|
"user_id": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def get_lang_filter(self, config_name: str): |
|
|
|
tokens = config_name.split("_") |
|
if len(tokens) == 0 or len(tokens[2]) != 3: |
|
return None |
|
return tokens[2] |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
url = _URLS["train"] |
|
data_dir = dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_path": Path(data_dir), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_path: Path, split: str): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_parquet(data_path) |
|
|
|
lang_filter = self.get_lang_filter(self.config.name) |
|
if lang_filter is not None: |
|
df = df[df["language_code"] == lang_filter] |
|
else: |
|
df = df[df["language_code"].isin(_LANGUAGES)] |
|
|
|
if self.config.schema == "source": |
|
for idx, row in df.iterrows(): |
|
data = row.to_dict() |
|
yield idx, data |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
for idx, row in df.iterrows(): |
|
sample = { |
|
"id": str(idx), |
|
"text_1": row["inputs"], |
|
"text_2": row["targets"], |
|
"text_1_name": "inputs", |
|
"text_2_name": "targets", |
|
} |
|
yield idx, sample |
|
|