|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{, |
|
author="Jiang, Shengyi |
|
and Fu, Sihui |
|
and Lin, Nankai |
|
and Fu, Yingwen", |
|
title="Pre-trained Models and Evaluation Data for the Khmer Language", |
|
year="2021", |
|
publisher="Tsinghua Science and Technology", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "gklmip_newsclass" |
|
|
|
_DESCRIPTION = """\ |
|
The GKLMIP Khmer News Dataset is scraped from the Voice of America Khmer website. \ |
|
The news articles in the dataset are categorized into 8 categories: culture, economics, education, \ |
|
environment, health, politics, rights and science. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/GKLMIP/Pretrained-Models-For-Khmer" |
|
_LANGUAGES = ["khm"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/GKLMIP/Pretrained-Models-For-Khmer/raw/main/NewsDataset.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_TAGS = ["culture", "economic", "education", "environment", "health", "politics", "right", "science"] |
|
|
|
|
|
class GklmipNewsclass(datasets.GeneratorBasedBuilder): |
|
"""\ |
|
The GKLMIP Khmer News Dataset is scraped from the Voice of America Khmer website. \ |
|
The news articles in the dataset are categorized into 8 categories: culture, economics, education, \ |
|
environment, health, politics, rights and science. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"culture": datasets.Value("bool"), |
|
"economic": datasets.Value("bool"), |
|
"education": datasets.Value("bool"), |
|
"environment": datasets.Value("bool"), |
|
"health": datasets.Value("bool"), |
|
"politics": datasets.Value("bool"), |
|
"right": datasets.Value("bool"), |
|
"science": datasets.Value("bool"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(_TAGS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "dev.csv"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
dataset = pd.read_csv(filepath) |
|
reverse_encoding = dict(zip(range(len(_TAGS)), _TAGS)) |
|
if self.config.schema == "source": |
|
for i, row in dataset.iterrows(): |
|
yield i, { |
|
"text": row["text"], |
|
"culture": row["culture"], |
|
"economic": row["economic"], |
|
"education": row["education"], |
|
"environment": row["environment"], |
|
"health": row["health"], |
|
"politics": row["politics"], |
|
"right": row["right"], |
|
"science": row["science"], |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in dataset.iterrows(): |
|
yield i, {"id": i, "text": row["text"], "label": reverse_encoding[np.argmax(row[_TAGS])]} |
|
|