File size: 6,306 Bytes
cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 0da8d77 cca2724 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """
@inproceedings{azhar2019multi,
title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting},
author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono}
booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)},
pages={35--40},
year={2019}
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "hoasa"
_DESCRIPTION = """
HoASA: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, AiryRooms.
The dataset covers ten different aspects of hotel quality. Similar to the CASA dataset, each review is labeled with a single sentiment label for each aspect.
There are four possible sentiment classes for each sentiment label:
positive, negative, neutral, and positive-negative.
The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet).
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
_LICENSE = "CC-BY-SA 4.0"
_URLS = {
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/train_preprocess.csv",
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/valid_preprocess.csv",
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/test_preprocess.csv",
}
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class HoASA(datasets.GeneratorBasedBuilder):
"""HoASA is an aspect based sentiment analysis dataset"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="hoasa_source",
version=SOURCE_VERSION,
description="HoASA source schema",
schema="source",
subset_id="hoasa",
),
SEACrowdConfig(
name="hoasa_seacrowd_text_multi",
version=SEACROWD_VERSION,
description="HoASA Nusantara schema",
schema="seacrowd_text_multi",
subset_id="hoasa",
),
]
DEFAULT_CONFIG_NAME = "hoasa_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("int64"),
"review": datasets.Value("string"),
"ac": datasets.Value("string"),
"air_panas": datasets.Value("string"),
"bau": datasets.Value("string"),
"general": datasets.Value("string"),
"kebersihan": datasets.Value("string"),
"linen": datasets.Value("string"),
"service": datasets.Value("string"),
"sunrise_meal": datasets.Value("string"),
"tv": datasets.Value("string"),
"wifi": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text_multi":
features = schemas.text_multi_features(["pos", "neut", "neg", "neg_pos"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"]))
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"]))
data_dir = {
"train": train_csv_path,
"validation": validation_csv_path,
"test": test_csv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
if self.config.schema == "source":
for row in df.itertuples():
entry = {
"index": row.index,
"review": row.review,
"ac": row.ac,
"air_panas": row.air_panas,
"bau": row.bau,
"general": row.general,
"kebersihan": row.kebersihan,
"linen": row.linen,
"service": row.service,
"sunrise_meal": row.sunrise_meal,
"tv": row.tv,
"wifi": row.wifi,
}
yield row.index, entry
elif self.config.schema == "seacrowd_text_multi":
for row in df.itertuples():
entry = {
"id": str(row.index),
"text": row.review,
"labels": [label for label in row[3:]],
}
yield row.index, entry
|