|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@article{hidayatullah2020attention, |
|
title={Attention-based cnn-bilstm for dialect identification on javanese text}, |
|
author={Hidayatullah, Ahmad Fathan and Cahyaningtyas, Siwi and Pamungkas, Rheza Daffa}, |
|
journal={Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control}, |
|
pages={317--324}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "jadi_ide" |
|
|
|
_DESCRIPTION = """\ |
|
The JaDi-Ide dataset is a Twitter dataset for Javanese dialect identification, containing 16,498 |
|
data samples. The dialect is classified into `Standard Javanese`, `Ngapak Javanese`, and `East |
|
Javanese` dialects. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/fathanick/Javanese-Dialect-Identification-from-Twitter-Data" |
|
_LICENSE = "Unknown" |
|
_URLS = { |
|
_DATASETNAME: "https://github.com/fathanick/Javanese-Dialect-Identification-from-Twitter-Data/raw/main/Update 16K_Dataset.xlsx", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class JaDi_Ide(datasets.GeneratorBasedBuilder): |
|
"""The JaDi-Ide dataset is a Twitter dataset for Javanese dialect identification, containing 16,498 |
|
data samples.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="jadi_ide_source", |
|
version=SOURCE_VERSION, |
|
description="JaDi-Ide source schema", |
|
schema="source", |
|
subset_id="jadi_ide", |
|
), |
|
NusantaraConfig( |
|
name="jadi_ide_nusantara_text", |
|
version=NUSANTARA_VERSION, |
|
description="JaDi-Ide Nusantara schema", |
|
schema="nusantara_text", |
|
subset_id="jadi_ide", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "jadi_ide_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.schema == "nusantara_text": |
|
features = schemas.text_features(["Jawa Timur", "Jawa Standar", "Jawa Ngapak"]) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = Path(dl_manager.download(urls)) |
|
data_files = {"train": base_dir} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_excel(filepath) |
|
df.columns = ["id", "text", "label"] |
|
|
|
if self.config.schema == "source": |
|
for idx, row in enumerate(df.itertuples()): |
|
ex = { |
|
"id": str(idx), |
|
"text": row.text, |
|
"label": row.label, |
|
} |
|
yield idx, ex |
|
|
|
elif self.config.schema == "nusantara_text": |
|
for idx, row in enumerate(df.itertuples()): |
|
ex = { |
|
"id": str(idx), |
|
"text": row.text, |
|
"label": row.label, |
|
} |
|
yield idx, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|