from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from nusacrowd.utils import schemas from nusacrowd.utils.configs import NusantaraConfig from nusacrowd.utils.constants import Tasks _CITATION = """\ @article{hidayatullah2020attention, title={Attention-based cnn-bilstm for dialect identification on javanese text}, author={Hidayatullah, Ahmad Fathan and Cahyaningtyas, Siwi and Pamungkas, Rheza Daffa}, journal={Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control}, pages={317--324}, year={2020} } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "jadi_ide" _DESCRIPTION = """\ The JaDi-Ide dataset is a Twitter dataset for Javanese dialect identification, containing 16,498 data samples. The dialect is classified into `Standard Javanese`, `Ngapak Javanese`, and `East Javanese` dialects. """ _HOMEPAGE = "https://github.com/fathanick/Javanese-Dialect-Identification-from-Twitter-Data" _LICENSE = "Unknown" _URLS = { _DATASETNAME: "https://github.com/fathanick/Javanese-Dialect-Identification-from-Twitter-Data/raw/main/Update 16K_Dataset.xlsx", } # TODO check supported tasks _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _NUSANTARA_VERSION = "1.0.0" class JaDi_Ide(datasets.GeneratorBasedBuilder): """The JaDi-Ide dataset is a Twitter dataset for Javanese dialect identification, containing 16,498 data samples.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) BUILDER_CONFIGS = [ NusantaraConfig( name="jadi_ide_source", version=SOURCE_VERSION, description="JaDi-Ide source schema", schema="source", subset_id="jadi_ide", ), NusantaraConfig( name="jadi_ide_nusantara_text", version=NUSANTARA_VERSION, description="JaDi-Ide Nusantara schema", schema="nusantara_text", subset_id="jadi_ide", ), ] DEFAULT_CONFIG_NAME = "jadi_ide_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string") } ) elif self.config.schema == "nusantara_text": features = schemas.text_features(["Jawa Timur", "Jawa Standar", "Jawa Ngapak"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # Dataset does not have predetermined split, putting all as TRAIN urls = _URLS[_DATASETNAME] base_dir = Path(dl_manager.download(urls)) data_files = {"train": base_dir} return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files["train"], "split": "train", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" df = pd.read_excel(filepath) df.columns = ["id", "text", "label"] if self.config.schema == "source": for idx, row in enumerate(df.itertuples()): ex = { "id": str(idx), "text": row.text, "label": row.label, } yield idx, ex elif self.config.schema == "nusantara_text": for idx, row in enumerate(df.itertuples()): ex = { "id": str(idx), "text": row.text, "label": row.label, } yield idx, ex else: raise ValueError(f"Invalid config: {self.config.name}")