Datasets:

Languages:
Thai
ArXiv:
License:
tha_lotus / tha_lotus.py
holylovenia's picture
Upload tha_lotus.py with huggingface_hub
d496762 verified
"""
SEA Crowd Data Loader for Thai LOTUS.
"""
import os
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
import pandas as pd
from collections import Counter
from collections.abc import KeysView, Iterable
_CITATION = r"""
@INPROCEEDINGS{thaiLOTUSBN,
author={Chotimongkol, Ananlada and Saykhum, Kwanchiva and Chootrakool, Patcharika and Thatphithakkul, Nattanun and Wutiwiwatchai, Chai},
booktitle={2009 Oriental COCOSDA International Conference on Speech Database and Assessments},
title={LOTUS-BN: A Thai broadcast news corpus and its research applications},
year={2009},
volume={},
number={},
pages={44-50},
doi={10.1109/ICSDA.2009.5278377}}
"""
logger = datasets.logging.get_logger(__name__)
_LOCAL = False
_LANGUAGES = ["tha"]
_DATASETNAME = "tha_lotus"
_DESCRIPTION = r"""
The Large vOcabualry Thai continUous Speech recognition (LOTUS) corpus was designed for developing large vocabulary
continuous speech recognition (LVCSR), spoken dialogue system, speech dictation, broadcast news transcriber.
It contains two datasets, one for training acoustic model, another for training a language model.
"""
_HOMEPAGE = "https://github.com/korakot/corpus/tree/main/LOTUS"
_LICENSE = Licenses.CC_BY_NC_SA_3_0.value
_URL = "https://github.com/korakot/corpus/releases/download/v1.0/AIFORTHAI-LotusCorpus.zip"
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
assert len(CONFIG_SUFFIXES_FOR_TASK) == 1
config_choices_folder_structure = {
"unidrection_clean": ("PD", "U", "Clean"),
"unidrection_office": ("PD", "U", "Office"),
"closetalk_clean": ("PD", "C", "Clean"),
"closetalk_office": ("PD", "C", "Office")}
class ThaiLOTUS(datasets.GeneratorBasedBuilder):
"""Thai Lotus free-version dataset, re-implemented for SEACrowd from https://github.com/korakot/corpus/blob/main/LOTUS"""
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_{config_name}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema for config {config_name}",
schema=f"source",
subset_id=config_name
) for config_name in config_choices_folder_structure.keys()
] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{config_name}_seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} seacrowd schema for {_SUPPORTED_TASKS[0].name} and config {config_name}",
schema=f"seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}",
subset_id=config_name
) for config_name in config_choices_folder_structure.keys()
]
def _info(self) -> datasets.DatasetInfo:
_config_schema_name = self.config.schema
logger.info(f"Received schema name: {self.config.schema}")
# source schema
if _config_schema_name == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"audio_id": datasets.Value("string"),
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"thai_text": datasets.Value("string"),
"audio_arr_pos_start": datasets.Sequence(datasets.Value("float")),
"audio_arr_pos_end": datasets.Sequence(datasets.Value("float")),
"phonemes": datasets.Sequence(datasets.Value("string"))
}
)
# speech-text schema
elif _config_schema_name == f"seacrowd_{CONFIG_SUFFIXES_FOR_TASK[0]}":
features = schemas.speech_text_features
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
@staticmethod
def __strip_text_iterables(input: Iterable):
if not isinstance(input, str):
return list(map(str.strip, input))
else:
return input.strip()
@classmethod
def __read_text_files(cls, path: str, init_lines_to_skip:int=0, remove_empty_line: bool=True, strip_trailing_whitespace: bool=True):
with open(path, "r") as f:
data = cls.__strip_text_iterables(f.readlines())
# pre-processing steps based on args
if init_lines_to_skip>0:
data = data[init_lines_to_skip:]
if remove_empty_line:
data = [_data for _data in data if len(_data.strip()) != 0]
if strip_trailing_whitespace:
data = [_data.strip() for _data in data]
return data
@classmethod
def __preprocess_cc_lab_file(cls, cc_lab_file: str):
if not cc_lab_file.endswith(".lab"):
raise ValueError("The file isn't a .lab!")
meta = ["audio_arr_pos_start", "audio_arr_pos_end", "phonemes"]
raw_data = cls.__read_text_files(cc_lab_file)
data = pd.DataFrame([dict(zip(meta, cls.__strip_text_iterables(_data.split(" ")))) for _data in raw_data])
# since the ratio of end time and audio array length around (624.5, 625.5) is 97.50074382624219%
# we can divide the array ratio by 625
len_ratio = 625
data["audio_arr_pos_start"] = data["audio_arr_pos_start"].astype("int")/len_ratio
data["audio_arr_pos_end"] = data["audio_arr_pos_end"].astype("int")/len_ratio
return data.to_dict(orient="list")
@classmethod
def __folder_walk_file_grabber(cls, folder_dir: str, ext: str=""):
all_files = []
for child_dir in os.listdir(folder_dir):
_full_path = os.path.join(folder_dir, child_dir)
if os.path.isdir(_full_path):
all_files.extend(cls.__folder_walk_file_grabber(_full_path, ext))
elif _full_path.endswith(ext):
all_files.append(_full_path)
return all_files
@classmethod
def __lotus_index_generator(cls, root_folder: str):
index_raw_data = cls.__read_text_files(f"{root_folder}/index.txt", init_lines_to_skip=5)
# since in the index file we have many-to-one audio recording to the same identifier of sentence values in PDsen.txt
# except for PD data (phonetically distributed -- one sentence, multiple audios) we will filter such occurrences (for now)
_index_candidates = [data.split("\t")[2] for data in index_raw_data]
valid_idx = [idx for idx, val in Counter(_index_candidates).items() if val == 1 or "pd" in idx]
# contains triplets of ("dataset number", "sequence number", "text identifier")
metadata = ("dataset_number", "sequence_number")
text_index_data = {
data.split("\t")[2].strip():
dict(zip(metadata, cls.__strip_text_iterables(data.split("\t")[:2])))
for data in index_raw_data if data.split("\t")[2] in valid_idx}
audio_index_data = {
"_".join(values.values()): key for key, values in text_index_data.items()
}
return text_index_data, audio_index_data
@classmethod
def __lotus_pd_sen_generator(cls, root_folder: str, valid_idx_key: KeysView):
text_data = [text for text in cls.__read_text_files(f"{root_folder}/PDsen.txt")]
metadata = ("thai_text", "phonemes")
captioned_text_data = {
text.split("\t")[0].strip():
dict(zip(metadata, cls.__strip_text_iterables(text.split("\t")[1:])))
for text in text_data if text.split("\t")[0].strip() in valid_idx_key}
return captioned_text_data
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
# since the folder are zipped, the zipped URL containing whole resource of this dataset must be downloaded
_all_folder_local = os.path.join(dl_manager.download_and_extract(_URL), "LOTUS")
# Process all suplement files
# supplement files is used regardless of the config
# it contains the index mapper of text & audio, word list and its Phonemes
supplement_folder = os.path.join(_all_folder_local, "Supplement")
text_index_data, audio_index_data = self.__lotus_index_generator(supplement_folder)
audio_level_text_data = self.__lotus_pd_sen_generator(supplement_folder, text_index_data.keys())
_folder_structure = config_choices_folder_structure[self.config.subset_id]
# for lab folder, it could be UC, UO, CC, or CO, depending on the folder_structure choice based on dataset config name
_lab_foldername = _folder_structure[1][0].upper() + _folder_structure[2][0].upper() + "lab"
wav_folder = os.path.join(_all_folder_local, os.path.join(*_folder_structure), "Wav")
cc_lab_folder = os.path.join(_all_folder_local, os.path.join(*_folder_structure), _lab_foldername)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"wav_folder": wav_folder,
"cc_lab_folder": cc_lab_folder,
"captioned_data": audio_level_text_data,
"audio_index_data": audio_index_data}
)]
def _generate_examples(self, wav_folder, cc_lab_folder, captioned_data, audio_index_data) -> Tuple[int, Dict]:
"""
This dataset contains 2 version of texts:
1. Transcriptions per syllables and its timestamp
2. A Text DB (in PDsen.txt) containing the whole text in Thai Script and its Romanized Morphemes
"""
_config_schema_name = self.config.schema
# this record list will contain short .wav files contain of Thai short audio
wav_record_list = self.__folder_walk_file_grabber(wav_folder, ".wav")
idx = 1
for audio_path in wav_record_list:
audio_id = audio_path.split("/")[-1][:-4]
example_data = {"id": idx, "audio_id": audio_id, "file": audio_path, "audio": audio_path}
# for obtaining pd_text_supplement_data, we get the audio_index from the filename
# then chaining it to the captioned data which uses the value from audio_index_data
default_pd_text_data = {"thai_text": "", "romanized_phonemes":""}
_pd_text_key = audio_index_data.get("_".join(audio_id.split("_")[1:]))
pd_text_supplement_data = captioned_data.get(_pd_text_key, default_pd_text_data)
example_data.update(pd_text_supplement_data)
if _config_schema_name == "source":
# add sequential data from cc_lab_data
cc_lab_data = self.__preprocess_cc_lab_file(os.path.join(cc_lab_folder, audio_id + ".lab"))
example_data.update(cc_lab_data)
yield idx, {colname: example_data[colname] for colname in self.info.features}
elif _config_schema_name == "seacrowd_sptext":
# skip if the text data not found
if pd_text_supplement_data != default_pd_text_data:
yield idx, {"id": idx, "path": example_data["file"], "audio": example_data["audio"], "text": example_data["thai_text"], "speaker_id": None, "metadata": {"speaker_age": None, "speaker_gender": None}}
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
idx += 1