"""Custom classification dataset.""" import csv import datasets _DESCRIPTION = """\ """ _CITATION = """\ """ _TRAIN_DOWNLOAD_URL = "train.csv" _TEST_DOWNLOAD_URL = "test.csv" _DATASET_MAP = {"NEGATIVE": 0, "POSITIVE": 1} class Custom(datasets.GeneratorBasedBuilder): """Custom classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel( names=["NEGATIVE", "POSITIVE"] ), } ), homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": test_path} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} ), ] def _generate_examples(self, filepath): """Generate Custom examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True, ) for id_, row in enumerate(csv_reader): text, label = row label = _DATASET_MAP[label] yield id_, {"text": text, "label": label}