hamedbabaeigiglou commited on
Commit
004a7b4
·
verified ·
1 Parent(s): 9f9c19d

minor update to readme

Browse files
Files changed (1) hide show
  1. README.md +25 -11
README.md CHANGED
@@ -56,30 +56,44 @@ data = ontology.extract()
56
 
57
  **How use the loaded dataset for LLM4OL Paradigm task settings?**
58
  ``` python
 
59
  from ontolearner import GoodRelations, LearnerPipeline, train_test_split
60
 
 
61
  ontology = GoodRelations()
62
- ontology.load()
63
  data = ontology.extract()
64
 
65
  # Split into train and test sets
66
- train_data, test_data = train_test_split(data, test_size=0.2)
67
 
68
- # Create a learning pipeline (for RAG-based learning)
 
69
  pipeline = LearnerPipeline(
70
- task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
71
- retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
72
- llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
73
- hf_token = "your_huggingface_token" # Only needed for gated models
 
74
  )
75
 
76
- # Train and evaluate
77
- results, metrics = pipeline.fit_predict_evaluate(
78
  train_data=train_data,
79
  test_data=test_data,
80
- top_k=3,
81
- test_limit=10
 
82
  )
 
 
 
 
 
 
 
 
 
83
  ```
84
 
85
  For more detailed documentation, see the [![Documentation](https://img.shields.io/badge/Documentation-ontolearner.readthedocs.io-blue)](https://ontolearner.readthedocs.io)
 
56
 
57
  **How use the loaded dataset for LLM4OL Paradigm task settings?**
58
  ``` python
59
+ # Import core modules from the OntoLearner library
60
  from ontolearner import GoodRelations, LearnerPipeline, train_test_split
61
 
62
+ # Load the GoodRelations ontology, which contains concepts related to wines, their properties, and categories
63
  ontology = GoodRelations()
64
+ ontology.load() # Load entities, types, and structured term annotations from the ontology
65
  data = ontology.extract()
66
 
67
  # Split into train and test sets
68
+ train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
69
 
70
+ # Initialize a multi-component learning pipeline (retriever + LLM)
71
+ # This configuration enables a Retrieval-Augmented Generation (RAG) setup
72
  pipeline = LearnerPipeline(
73
+ retriever_id='sentence-transformers/all-MiniLM-L6-v2', # Dense retriever model for nearest neighbor search
74
+ llm_id='Qwen/Qwen2.5-0.5B-Instruct', # Lightweight instruction-tuned LLM for reasoning
75
+ hf_token='...', # Hugging Face token for accessing gated models
76
+ batch_size=32, # Batch size for training/prediction if supported
77
+ top_k=5 # Number of top retrievals to include in RAG prompting
78
  )
79
 
80
+ # Run the pipeline: training, prediction, and evaluation in one call
81
+ outputs = pipeline(
82
  train_data=train_data,
83
  test_data=test_data,
84
+ evaluate=True, # Compute metrics like precision, recall, and F1
85
+ task='term-typing' # Specifies the task
86
+ # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
87
  )
88
+
89
+ # Print final evaluation metrics
90
+ print("Metrics:", outputs['metrics'])
91
+
92
+ # Print the total time taken for the full pipeline execution
93
+ print("Elapsed time:", outputs['elapsed_time'])
94
+
95
+ # Print all outputs (including predictions)
96
+ print(outputs)
97
  ```
98
 
99
  For more detailed documentation, see the [![Documentation](https://img.shields.io/badge/Documentation-ontolearner.readthedocs.io-blue)](https://ontolearner.readthedocs.io)