hamedbabaeigiglou commited on
Commit
5348360
·
verified ·
1 Parent(s): c5ea1ee

minor update to readme

Browse files
Files changed (1) hide show
  1. README.md +25 -11
README.md CHANGED
@@ -57,30 +57,44 @@ data = ontology.extract()
57
 
58
  **How use the loaded dataset for LLM4OL Paradigm task settings?**
59
  ``` python
 
60
  from ontolearner import CopyrightOnto, LearnerPipeline, train_test_split
61
 
 
62
  ontology = CopyrightOnto()
63
- ontology.load()
64
  data = ontology.extract()
65
 
66
  # Split into train and test sets
67
- train_data, test_data = train_test_split(data, test_size=0.2)
68
 
69
- # Create a learning pipeline (for RAG-based learning)
 
70
  pipeline = LearnerPipeline(
71
- task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
72
- retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
73
- llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
74
- hf_token = "your_huggingface_token" # Only needed for gated models
 
75
  )
76
 
77
- # Train and evaluate
78
- results, metrics = pipeline.fit_predict_evaluate(
79
  train_data=train_data,
80
  test_data=test_data,
81
- top_k=3,
82
- test_limit=10
 
83
  )
 
 
 
 
 
 
 
 
 
84
  ```
85
 
86
  For more detailed documentation, see the [![Documentation](https://img.shields.io/badge/Documentation-ontolearner.readthedocs.io-blue)](https://ontolearner.readthedocs.io)
 
57
 
58
  **How use the loaded dataset for LLM4OL Paradigm task settings?**
59
  ``` python
60
+ # Import core modules from the OntoLearner library
61
  from ontolearner import CopyrightOnto, LearnerPipeline, train_test_split
62
 
63
+ # Load the CopyrightOnto ontology, which contains concepts related to wines, their properties, and categories
64
  ontology = CopyrightOnto()
65
+ ontology.load() # Load entities, types, and structured term annotations from the ontology
66
  data = ontology.extract()
67
 
68
  # Split into train and test sets
69
+ train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
70
 
71
+ # Initialize a multi-component learning pipeline (retriever + LLM)
72
+ # This configuration enables a Retrieval-Augmented Generation (RAG) setup
73
  pipeline = LearnerPipeline(
74
+ retriever_id='sentence-transformers/all-MiniLM-L6-v2', # Dense retriever model for nearest neighbor search
75
+ llm_id='Qwen/Qwen2.5-0.5B-Instruct', # Lightweight instruction-tuned LLM for reasoning
76
+ hf_token='...', # Hugging Face token for accessing gated models
77
+ batch_size=32, # Batch size for training/prediction if supported
78
+ top_k=5 # Number of top retrievals to include in RAG prompting
79
  )
80
 
81
+ # Run the pipeline: training, prediction, and evaluation in one call
82
+ outputs = pipeline(
83
  train_data=train_data,
84
  test_data=test_data,
85
+ evaluate=True, # Compute metrics like precision, recall, and F1
86
+ task='term-typing' # Specifies the task
87
+ # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
88
  )
89
+
90
+ # Print final evaluation metrics
91
+ print("Metrics:", outputs['metrics'])
92
+
93
+ # Print the total time taken for the full pipeline execution
94
+ print("Elapsed time:", outputs['elapsed_time'])
95
+
96
+ # Print all outputs (including predictions)
97
+ print(outputs)
98
  ```
99
 
100
  For more detailed documentation, see the [![Documentation](https://img.shields.io/badge/Documentation-ontolearner.readthedocs.io-blue)](https://ontolearner.readthedocs.io)