--- dataset_info: features: - name: code dtype: string - name: docstring dtype: string - name: func_name dtype: string - name: language dtype: string - name: repo dtype: string - name: path dtype: string - name: url dtype: string - name: license dtype: string splits: - name: train num_bytes: 2029823478 num_examples: 764189 - name: validation num_bytes: 158726194 num_examples: 125016 - name: test num_bytes: 75240901 num_examples: 75350 download_size: 411968838 dataset_size: 2263790573 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Java Code Dataset ## Dataset Description This dataset contains Java functions with their documentation comments extracted from GitHub repositories. ### Features - `code`: The Java function code - `docstring`: Documentation comment for the function - `func_name`: Function name - `language`: Programming language (always "Java") - `repo`: Source repository name - `path`: File path within the repository - `url`: GitHub URL to the source file - `license`: License of the source code ## Dataset Structure The dataset contains the following splits: - train: 764189 examples - validation: 125016 examples - test: 75350 examples ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("Shuu12121/java-codesearch-dataset-open") # Access the training split train_data = dataset["train"] # Example: Print the first sample print(train_data[0]) ``` ## Source This dataset was created by scraping Java code from GitHub repositories. Each function includes its documentation comment and license information. ## License This dataset contains code from various repositories with different licenses. Each sample includes its original license information in the `license` field.