augeobench / augeobench.py
Silviase's picture
upload data and script
b4c090c verified
import json
import os
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Value, Features, Image
class AugeoBench(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description="AugeoBench: Multimodal QA dataset with Japanese problem-solving questions and diagram images.",
features=Features({
"id": Value("string"),
"url": Value("string"),
"question_context_ja": Value("string"),
"question_text_ja": Value("string"),
"question_information_ja": Value("string"),
"answer_exact": Value("string"),
"answer_text_ja": Value("string"),
"question_image": Image(),
"answer_image": Image(),
"Genre": Value("string"),
"Remarks": Value("string"),
}),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_files = {
"annotation": "annotation_clean.json",
"images": "images.zip",
}
downloaded_files = dl_manager.download_and_extract(data_files)
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"annotation_path": downloaded_files["annotation"],
"images_dir": downloaded_files["images"],
},
)
]
def _generate_examples(self, annotation_path, images_dir):
with open(annotation_path, encoding="utf-8") as f:
data = json.load(f)
for idx, item in enumerate(data):
q_img = os.path.join(images_dir, "images", item["question_image_path"]) if item.get("question_image_path") else None
a_img = os.path.join(images_dir, "images", item["answer_image_path"]) if item.get("answer_image_path") else None
yield idx, {
"id": item["id"],
"url": item["url"],
"question_context_ja": item["question_context_ja"],
"question_text_ja": item["question_text_ja"],
"question_information_ja": item["question_information_ja"],
"answer_exact": item["answer_exact"],
"answer_text_ja": item["answer_text_ja"],
"question_image": q_img,
"answer_image": a_img,
"Genre": item["Genre"],
"Remarks": item["Remarks"],
}