Silviase commited on
Commit
5de07c8
·
verified ·
1 Parent(s): 0048c39

upload data and script

Browse files
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators: []
3
+ language_creators: []
4
+ language: ["ja"]
5
+ license: "cc-by-4.0"
6
+ multilinguality: ["monolingual"]
7
+ pretty_name: "AugeoBench"
8
+ size_categories: ["n<100"]
9
+ source_datasets: []
10
+ task_categories: ["visual-question-answering"]
11
+ task_ids: ["visual-question-answering"]
12
+ ---
13
+
14
+ # AugeoBench
15
+
16
+ AugeoBench is a multimodal QA benchmark consisting of Japanese entrance-exam-style geometry questions. Each instance provides a contextual description, a question text, a reference image, and a correct answer.
17
+
18
+ ## Dataset Structure
19
+
20
+ - `id`: Unique ID for the question
21
+ - `url`: URL of the question
22
+ - `question_context_ja`: Context of the question
23
+ - `question_text_ja`: Question text
24
+ - `question_information_ja`: Additional information about the question
25
+ - `answer_exact`: Exact answer
26
+ - `answer_text_ja`: Answer text
27
+ - `question_image`: Question image
28
+ - `answer_image`: Answer image
29
+ - `Genre`: Genre of the question
30
+ - `Remarks`: Remarks about the question
31
+
32
+ ## Example
33
+
34
+ ```json
35
+ {
36
+ "id": "1",
37
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19331/",
38
+ "question_context_ja": "図において,MはBEの真ん中の点であり...",
39
+ "question_text_ja": "線分ADと線分BCの関係を答えなさい。",
40
+ "question_information_ja": "図において,MはBEの真ん中の点であり...",
41
+ "answer_exact": "平行",
42
+ "answer_text_ja": "視覚化した図において,同じ色のついた三角形は角度が等しい相似な図形です。\\\\(\\angle ADC = \\angle BCD\\\\) で錯角が等しいので,線分ADと線分BCは平行です。",
43
+ "question_image": PIL.Image.Image,
44
+ "answer_image": PIL.Image.Image,
45
+ "Genre": "Relation, Focus",
46
+ "Remarks": "placeholder_remarks"
47
+ }
48
+ ```
49
+
50
+ ## Updating procedure
51
+
52
+ 1. Annotate the dataset and save it as `AugeoBench_annotationsheet.xlsx`
53
+ 2. Cleanse the dataset with `uv run python cleanse.py`
54
+ 3. Zip the images with `bash prepare.sh` in top-level directory
55
+ 4. Run `uv run python -m augeobench.push_to_hub`
__pycache__/push_to_hub.cpython-313.pyc ADDED
Binary file (1.17 kB). View file
 
annotation_clean.json ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "id": "1",
4
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19331/",
5
+ "question_context_ja": "図において,MはBEの真ん中の点であり,FはABをAF:FB=6:7に分ける点です。同じ印の角は大きさが等しいものとします。三角形ABCがAB=ACの二等辺三角形です.",
6
+ "question_image_path": "1_q.png",
7
+ "question_image_tikz": "",
8
+ "sub_id": "1",
9
+ "question_information_ja": "placeholder_question_information_ja",
10
+ "question_text_ja": "線分ADと線分BCの関係を答えなさい.",
11
+ "answer_exact": "平行",
12
+ "answer_text_ja": "視覚化した図において,同じ色のついた三角形は角度が等しい相似な図形です。\n\\(\\angle ADC = \\angle BCD\\) で錯角が等しいので,線分ADと線分BCは平行です。",
13
+ "answer_image_path": "1_a_1.png",
14
+ "Genre": "関係の付与, 着目図形",
15
+ "Remarks": "placeholder_remarks"
16
+ },
17
+ {
18
+ "id": "1",
19
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19331/",
20
+ "question_context_ja": "図において,MはBEの真ん中の点であり,FはABをAF:FB=6:7に分ける点です。同じ印の角は大きさが等しいものとします。三角形ABCがAB=ACの二等辺三角形です.",
21
+ "question_image_path": "1_q.png",
22
+ "question_image_tikz": "",
23
+ "sub_id": "2",
24
+ "question_information_ja": "線分ADと線分BCは平行である.",
25
+ "question_text_ja": "三角形ADCの面積をAFDの面積で割った値を求めなさい.",
26
+ "answer_exact": "13/6",
27
+ "answer_text_ja": "\"点Fは線分ABを\\(AF : FB = 6 : 7\\) に分ける点なので,三角形ADF と三角形BCF は相似な関係です。この相似比から\\(DF : FC = 6 : 7\\) となります。三角形AFD の面積を \\(6x\\) とすると,三角形AFC の面積は \\(7x\\) となり,三角形ADC の面積は合計で \\(13x\\) になります。\", \"三角形ADCの面積をAFDの面積で割った値は \\( 13x / 6x = 13/6 \\)\"",
28
+ "answer_image_path": "1_a_2.png",
29
+ "Genre": "着目図形",
30
+ "Remarks": "placeholder_remarks"
31
+ },
32
+ {
33
+ "id": "1",
34
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19331/",
35
+ "question_context_ja": "図において,MはBEの真ん中の点であり,FはABをAF:FB=6:7に分ける点です。同じ印の角は大きさが等しいものとします。三角形ABCがAB=ACの二等辺三角形です.",
36
+ "question_image_path": "1_q.png",
37
+ "question_image_tikz": "",
38
+ "sub_id": "3",
39
+ "question_information_ja": "線分ADと線分BCは平行である.三角形ADCの面積を13xと仮定する.",
40
+ "question_text_ja": "三角形AME の面積を求めなさい.",
41
+ "answer_exact": "12x",
42
+ "answer_text_ja": "\"三角形AEB と三角形ADC は,\\(AB = AC\\) (二等辺三角形の条件)で,対応する角度が等しいので合同です。点A を中心に回転すると,これらの三角形はぴったり重なります。点Mは線分BEの中点(\\(EM = MB\\))なので,三角形AME の面積は三角形ADC の面積の半分,つまり \\(13x / 2 = 6.5x\\) になります。\", \"以上より,三角形AME と三角形AFD の面積比は \\(6.5x : 6x = 13 : 12\\) です。\", \"したがって,三角形AME の面積は12xです。\"",
43
+ "answer_image_path": "1_a_3.png",
44
+ "Genre": "着目図形",
45
+ "Remarks": "placeholder_remarks"
46
+ },
47
+ {
48
+ "id": "2",
49
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19173/",
50
+ "question_context_ja": "図において,四角形ABCDは平行四辺形であり,AH=2cm,HI=IE=3cm,DE:EC=4:1です。ただし,図は正確とは限りません。",
51
+ "question_image_path": "2_q.png",
52
+ "question_image_tikz": "",
53
+ "sub_id": "1",
54
+ "question_information_ja": "AEの延長とBCの延長の交点をJとする.",
55
+ "question_text_ja": "AD:JCを求めなさい.",
56
+ "answer_exact": "4:1",
57
+ "answer_text_ja": "三角形AED と JEC は相似比が 4 : 1 なので, EJ=2cm で,AD : JC=4 : 1 です。",
58
+ "answer_image_path": "2_a_1.png",
59
+ "Genre": "placeholder_genre",
60
+ "Remarks": "placeholder_remarks"
61
+ },
62
+ {
63
+ "id": "2",
64
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19173/",
65
+ "question_context_ja": "図において,四角形ABCDは平行四辺形であり,AH=2cm,HI=IE=3cm,DE:EC=4:1です。ただし,図は正確とは限りません。",
66
+ "question_image_path": "2_q.png",
67
+ "question_image_tikz": "",
68
+ "sub_id": "2",
69
+ "question_information_ja": "AEの延長とBCの延長の交点をJとする.",
70
+ "question_text_ja": "AF:BCを求めなさい.",
71
+ "answer_exact": "5:16",
72
+ "answer_text_ja": "三角形AHF と JHB は相似比が 2cm : 8cm=1 : 4 で,辺の比をそろえると上の通りになり,AF : BC=5 : 16 です。また,FH : HB=1 : 4 です。",
73
+ "answer_image_path": "2_a_2.png",
74
+ "Genre": "placeholder_genre",
75
+ "Remarks": "placeholder_remarks"
76
+ },
77
+ {
78
+ "id": "2",
79
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19173/",
80
+ "question_context_ja": "図において,四角形ABCDは平行四辺形であり,AH=2cm,HI=IE=3cm,DE:EC=4:1です。ただし,図は正確とは限りません。",
81
+ "question_image_path": "2_q.png",
82
+ "question_image_tikz": "",
83
+ "sub_id": "3",
84
+ "question_information_ja": "AEの延長とBCの延長の交点をJとする.",
85
+ "question_text_ja": "FI:IGを求めなさい.",
86
+ "answer_exact": "1:1",
87
+ "answer_text_ja": "三角形AIF と JIG は合同で,FI=IG です.したがって,FI:IG=1:1です.\n",
88
+ "answer_image_path": "2_a_3.png",
89
+ "Genre": "placeholder_genre",
90
+ "Remarks": "placeholder_remarks"
91
+ },
92
+ {
93
+ "id": "2",
94
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19173/",
95
+ "question_context_ja": "図において,四角形ABCDは平行四辺形であり,AH=2cm,HI=IE=3cm,DE:EC=4:1です。ただし,図は正確とは限りません。",
96
+ "question_image_path": "2_q.png",
97
+ "question_image_tikz": "",
98
+ "sub_id": "4",
99
+ "question_information_ja": "AEの延長とBCの延長の交点をJとする.\nAD:JC=1:4である.\nAF:BC=5:16である.\nFI:IG=1:1である.",
100
+ "question_text_ja": "四角形BGIHの面積は四角形ABCDの面積の何倍か答えなさい。",
101
+ "answer_exact": "27/64",
102
+ "answer_text_ja": "三角形FHI は,三角形FBG の 1/5 × 1/2 = 1/10 倍,\n四角形BGIH は,三角形FBG の 1 - 1/10 = 9/10 倍である.したがって,四角形BGIH は,四角形ABCD の 1/2 × 15/16 × 9/10 = 27/64 倍となる.",
103
+ "answer_image_path": "2_a_4.png",
104
+ "Genre": "placeholder_genre",
105
+ "Remarks": "placeholder_remarks"
106
+ },
107
+ {
108
+ "id": "3",
109
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19082/",
110
+ "question_context_ja": "図の四角すいOABCDは,底面が正方形で,側面がすべて合同な二等辺三角形です。3点E,F,GはそれぞれOB,OC,OD上にあり,OE:EB=3:1,OF:FC=1:1です。正方形ABCDの対角線の交点をHとすると,OH,AF,EGは1点Pで交わります。",
111
+ "question_image_path": "3_q.png",
112
+ "question_image_tikz": "",
113
+ "sub_id": "1",
114
+ "question_information_ja": "placeholder_question_information_ja",
115
+ "question_text_ja": "三角すいOAEFと四角すいOABCDの体積比をもっとも簡単な整数比で表しなさい。",
116
+ "answer_exact": "3:16",
117
+ "answer_text_ja": "OE:EB=3:1, OF:FC=1:1であるため,三角錐OAEFの体積は四角錐OABCDの1/2 * 3/4 * 1/2 = 3/16倍である.したがって,体積比は3:16.",
118
+ "answer_image_path": "3_a_1.png",
119
+ "Genre": "placeholder_genre",
120
+ "Remarks": "placeholder_remarks"
121
+ },
122
+ {
123
+ "id": "3",
124
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19082/",
125
+ "question_context_ja": "図の四角すいOABCDは,底面が正方形で,側面がすべて合同な二等辺三角形です。3点E,F,GはそれぞれOB,OC,OD上にあり,OE:EB=3:1,OF:FC=1:1です。正方形ABCDの対角線の交点をHとすると,OH,AF,EGは1点Pで交わります。",
126
+ "question_image_path": "3_q.png",
127
+ "question_image_tikz": "",
128
+ "sub_id": "2",
129
+ "question_information_ja": "placeholder_question_information_ja",
130
+ "question_text_ja": "OP:PHをもっとも簡単な整数比で表しなさい。",
131
+ "answer_exact": "2:1",
132
+ "answer_text_ja": "断面OACに着目すると,AH:HC=1:1, OF:FC=1:1であることを用いて,面積比は以下のようになる.\nOAP:OPF:CPF:PHC:PAC=2:1:1:1:1\nしたがって,OP:PH=2:1",
133
+ "answer_image_path": "3_a_2.png",
134
+ "Genre": "関係の付与",
135
+ "Remarks": "placeholder_remarks"
136
+ },
137
+ {
138
+ "id": "3",
139
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19082/",
140
+ "question_context_ja": "図の四角すいOABCDは,底面が正方形で,側面がすべて合同な二等辺三角形です。3点E,F,GはそれぞれOB,OC,OD上にあり,OE:EB=3:1,OF:FC=1:1です。正方形ABCDの対角線の交点をHとすると,OH,AF,EGは1点Pで交わります。",
141
+ "question_image_path": "3_q.png",
142
+ "question_image_tikz": "",
143
+ "sub_id": "3",
144
+ "question_information_ja": "OP:PH=2:1",
145
+ "question_text_ja": "OG:GDをもっとも簡単な整数比で表しなさい。",
146
+ "answer_exact": "3:2",
147
+ "answer_text_ja": "断面ODBについて,D, BからそれぞれDBに垂直な線を伸ばし,EGの延長線との交点を考える.このとき,図のような相似の関係が成立する.したがって,OG:GD=3:2",
148
+ "answer_image_path": "3_a_3.png",
149
+ "Genre": "placeholder_genre",
150
+ "Remarks": "placeholder_remarks"
151
+ },
152
+ {
153
+ "id": "3",
154
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19082/",
155
+ "question_context_ja": "図の四角すいOABCDは,底面が正方形で,側面がすべて合同な二等辺三角形です。3点E,F,GはそれぞれOB,OC,OD上にあり,OE:EB=3:1,OF:FC=1:1です。正方形ABCDの対角線の交点をHとすると,OH,AF,EGは1点Pで交わります。",
156
+ "question_image_path": "3_q.png",
157
+ "question_image_tikz": "",
158
+ "sub_id": "4",
159
+ "question_information_ja": "三角すいOAEFと四角すいOABCDの体積比は3:16である.\nOG:GD=3:2である.",
160
+ "question_text_ja": "四角すいOAEFGと四角すいOABCDの体積比をもっとも簡単な整数比で表しなさい。",
161
+ "answer_exact": "27:80",
162
+ "answer_text_ja": "三角錐 OAFG の体積は,四角錐OABCDの 1/2 × 1/2 × 3/5 = 3/20 倍\n四角錐 OAEFG の体積は,三角錐 OAFG と三角錐OAEFと和で求められるから,四角錐OABCDの3/16 + 3/20 = 15/80 + 12/80 = 27/80 倍.\nしたがって,体積比は27:80",
163
+ "answer_image_path": "3_a_4.png",
164
+ "Genre": "placeholder_genre",
165
+ "Remarks": "placeholder_remarks"
166
+ },
167
+ {
168
+ "id": "4",
169
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19323/",
170
+ "question_context_ja": "図は正方形ABCDに2つの二等辺三角形ABEとCDFが接している図形です。",
171
+ "question_image_path": "4_q.png",
172
+ "question_image_tikz": "",
173
+ "sub_id": "1",
174
+ "question_information_ja": "placeholder_question_information_ja",
175
+ "question_text_ja": "xの角度を求めなさい",
176
+ "answer_exact": "45",
177
+ "answer_text_ja": "正方形ABCDと合同な正方形AEHGを作ります。二等辺三角形AEDを点Aを中心に90度回転させると三角形AGB と重なります(合同です)。このことより, DEとBGは垂直に交わり,線対称な図形であることに注目すると,色のついた三角形は直角二等辺三角形になります。xは45度です。",
178
+ "answer_image_path": "4_a_1.png",
179
+ "Genre": "placeholder_genre",
180
+ "Remarks": "placeholder_remarks"
181
+ },
182
+ {
183
+ "id": "4",
184
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19323/",
185
+ "question_context_ja": "図は正方形ABCDに2つの二等辺三角形ABEとCDFが接している図形です。",
186
+ "question_image_path": "4_q.png",
187
+ "question_image_tikz": "",
188
+ "sub_id": "2",
189
+ "question_information_ja": "x=45°",
190
+ "question_text_ja": "角BFDの大きさを求めなさい",
191
+ "answer_exact": "45",
192
+ "answer_text_ja": "同じように考えると右側にも直角二等辺三角形ができます。角 BFD は45度です。",
193
+ "answer_image_path": "4_a_2.png",
194
+ "Genre": "placeholder_genre",
195
+ "Remarks": "placeholder_remarks"
196
+ },
197
+ {
198
+ "id": "4",
199
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19323/",
200
+ "question_context_ja": "図は正方形ABCDに2つの二等辺三角形ABEとCDFが接している図形です。",
201
+ "question_image_path": "4_q.png",
202
+ "question_image_tikz": "",
203
+ "sub_id": "3",
204
+ "question_information_ja": "x=45°\n角BFDは45°である.",
205
+ "question_text_ja": "y+z=60度のとき,yの角度を求めなさい.",
206
+ "answer_exact": "22",
207
+ "answer_text_ja": "三角形 ABE と三角形 CDF が二等辺三角形なので,\n角 ABE = ● + 45 度,角 CDF = ○ + 45 度と表せます。\n色のついた三角形の内角と外角に注目すると\n角α = ● + 45 度 + 29 度,\n角β = ○ + 45 度 + 37 度で,\n角α = 角βなので,● = ○ + 8 度がいえます。\n三角形 ABE, 三角形 CDF の内角の和より,\ny + ●● + 45 度 × 2 = 180 度\nz + ○○ + 45 度 × 2 = 180 度\n● = ○ + 8 度 → ●● = ○○ + 16 度なので,\nz は y よりも 16 度大きいことがわかります。\ny と z の和は 60 度なので,y は (60−16)÷2 = 22 度です。",
208
+ "answer_image_path": "4_a_3.png",
209
+ "Genre": "placeholder_genre",
210
+ "Remarks": "placeholder_remarks"
211
+ },
212
+ {
213
+ "id": "5",
214
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19129/",
215
+ "question_context_ja": "面積が144cm^2の直角二等辺三角形の中に,1辺の長さが4cmの正方形があります。",
216
+ "question_image_path": "5_q.png",
217
+ "question_image_tikz": "",
218
+ "sub_id": "1",
219
+ "question_information_ja": "placeholder_question_information_ja",
220
+ "question_text_ja": "図の赤色のついた部分とその左部分にある直角三角形を組み合わせてできる三角形の面積を求めなさい。",
221
+ "answer_exact": "162/5",
222
+ "answer_text_ja": "144=12×12 なので, 直角二等辺三角形の長さは図のようになります。色のついた三角形の底辺は 18 cm で, 高さは 2 : 18 = 1 : 9 を利用すると 4×9/10=18/5 cm です。\n面積は 18×18/5×1/2=162/5 cm2 になります。",
223
+ "answer_image_path": "5_a_1.png",
224
+ "Genre": "着目図形",
225
+ "Remarks": "placeholder_remarks"
226
+ },
227
+ {
228
+ "id": "5",
229
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19129/",
230
+ "question_context_ja": "面積が144cm^2の直角二等辺三角形の中に,1辺の長さが4cmの正方形があります。",
231
+ "question_image_path": "5_q.png",
232
+ "question_image_tikz": "",
233
+ "sub_id": "2",
234
+ "question_information_ja": "図の赤色のついた部分とその左部分にある直角三角形を組み合わせてできる三角形の���積は162/5 cm^2です.",
235
+ "question_text_ja": "図の赤色の部分の面積を求めなさい.",
236
+ "answer_exact": "478/45",
237
+ "answer_text_ja": "☆の長さは 14×4/18=28/9 cm です。\n赤色の部分の左にある直角三角形の面積は 14×28/9×1/2=196/9 cm2。\n答えは 162/5-196/9=1458/45-980/45=478/45 cm2 になります。",
238
+ "answer_image_path": "5_a_2.png",
239
+ "Genre": "着目図形, 関係の付与",
240
+ "Remarks": "placeholder_remarks"
241
+ },
242
+ {
243
+ "id": "6",
244
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19181/",
245
+ "question_context_ja": "1辺の長さが4cmの立方体から,ある立体を切り取って残った部分を立体Xとします。立体Xは平らな面だけで囲まれています。図は立体Xを正面,真上,真横から見た図です。 ただし,正面,真上,真横から見た図の1マスは1cmとします。",
246
+ "question_image_path": "6_q.png",
247
+ "question_image_tikz": "",
248
+ "sub_id": "1",
249
+ "question_information_ja": "placeholder_question_information_ja",
250
+ "question_text_ja": "立体Xの体積を求めなさい。",
251
+ "answer_exact": "50",
252
+ "answer_text_ja": "立方体から四角柱(底面が台形)と,三角柱を取りのぞいた立体です。\n4×4×4=64 cm3 ... 立方体\n(2+4)×2×1/2×2=12 cm3 ... 四角柱\n1×2×1/2×2=2 cm3 ... 三角柱\n立体Xの体積は 64-(12+2)=50 cm3 です。",
253
+ "answer_image_path": "6_a_1.png",
254
+ "Genre": "展開ー立体",
255
+ "Remarks": "placeholder_remarks"
256
+ },
257
+ {
258
+ "id": "7",
259
+ "url": "https://sansu-seijin.jp/nyushimondai/2025-nyushimondai/19124/",
260
+ "question_context_ja": "正方形ABCDにおいて,辺AB,BC,CD上にそれぞれ,AE:EB=BF:FC=CG:GD=1:2である点E,F,Gがあります。辺AD上に点Pがあり,四角形EFGPの面積が四角形ABCDの面積の半分である.",
261
+ "question_image_path": "7_q.png",
262
+ "question_image_tikz": "",
263
+ "sub_id": "1",
264
+ "question_information_ja": "placeholder_question_information_ja",
265
+ "question_text_ja": "AP:PDを最も簡単な整数の比で表しなさい。",
266
+ "answer_exact": "1:2",
267
+ "answer_text_ja": "FPがAB, CDと平行になる時に条件を満たすから,AP:PD = BF:FC = 1:2",
268
+ "answer_image_path": "7_a_1.png",
269
+ "Genre": "補助線",
270
+ "Remarks": "placeholder_remarks"
271
+ }
272
+ ]
augeobench.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split, Value, Features, Image
4
+
5
+ class AugeoBench(GeneratorBasedBuilder):
6
+ def _info(self):
7
+ return DatasetInfo(
8
+ description="AugeoBench: Multimodal QA dataset with Japanese problem-solving questions and diagram images.",
9
+ features=Features({
10
+ "id": Value("string"),
11
+ "url": Value("string"),
12
+ "question_context_ja": Value("string"),
13
+ "question_text_ja": Value("string"),
14
+ "question_information_ja": Value("string"),
15
+ "answer_exact": Value("string"),
16
+ "answer_text_ja": Value("string"),
17
+ "question_image": Image(),
18
+ "answer_image": Image(),
19
+ "Genre": Value("string"),
20
+ "Remarks": Value("string"),
21
+ }),
22
+ supervised_keys=None,
23
+ )
24
+
25
+ def _split_generators(self, dl_manager):
26
+ data_files = {
27
+ "annotation": "annotation_clean.json",
28
+ "images": "images.zip",
29
+ }
30
+
31
+ downloaded_files = dl_manager.download_and_extract(data_files)
32
+
33
+ return [
34
+ SplitGenerator(
35
+ name=Split.TRAIN,
36
+ gen_kwargs={
37
+ "annotation_path": downloaded_files["annotation"],
38
+ "images_dir": downloaded_files["images"],
39
+ },
40
+ )
41
+ ]
42
+
43
+ def _generate_examples(self, annotation_path, images_dir):
44
+ with open(annotation_path, encoding="utf-8") as f:
45
+ data = json.load(f)
46
+
47
+ for idx, item in enumerate(data):
48
+ q_img = os.path.join(images_dir, item["question_image_path"]) if item.get("question_image_path") else None
49
+ a_img = os.path.join(images_dir, item["answer_image_path"]) if item.get("answer_image_path") else None
50
+
51
+ yield idx, {
52
+ "id": item["id"],
53
+ "url": item["url"],
54
+ "question_context_ja": item["question_context_ja"],
55
+ "question_text_ja": item["question_text_ja"],
56
+ "question_information_ja": item["question_information_ja"],
57
+ "answer_exact": item["answer_exact"],
58
+ "answer_text_ja": item["answer_text_ja"],
59
+ "question_image": q_img,
60
+ "answer_image": a_img,
61
+ "Genre": item["Genre"],
62
+ "Remarks": item["Remarks"],
63
+ }
images.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd457ad515ba2c983dff3ec3f2b5293ce9aa2ff4c28667825fc5558f6480e569
3
+ size 2631746
push_to_hub.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import create_repo, upload_folder
2
+ from datasets import load_dataset
3
+ from pprint import pprint
4
+
5
+ print("\n📤 Uploading to Hugging Face Hub...")
6
+ repo_id = "Silviase/augeobench"
7
+ create_repo(repo_id, repo_type="dataset", exist_ok=True)
8
+
9
+ upload_folder(
10
+ repo_id=repo_id,
11
+ repo_type="dataset",
12
+ folder_path="augeobench",
13
+ commit_message="upload data and script"
14
+ )
15
+
16
+ print("\n✅ Dataset uploaded successfully!")
17
+ print(f"dataset = load_dataset('{repo_id}', trust_remote_code=True, split='train')")
18
+
19
+ # Verify the dataset loads correctly from the hub
20
+ print("\n🔍 Verifying dataset from Hugging Face Hub...")
21
+ dataset = load_dataset(repo_id, trust_remote_code=True, split="train", cache_dir=None, download_mode='force_redownload')
22
+ print("🌸 Length of the dataset:", len(dataset))
23
+ print("📦 Sample from the loaded dataset:\n")
24
+ pprint(dataset[0])