Subh775 commited on
Commit
f582bf5
·
verified ·
1 Parent(s): ef5e1eb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +26 -27
README.md CHANGED
@@ -1,29 +1,28 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image
5
- dtype: image
6
- - name: mask
7
- dtype:
8
- image:
9
- mode: L
10
- - name: image_id
11
- dtype: string
12
- - name: width
13
- dtype: int32
14
- - name: height
15
- dtype: int32
16
- - name: num_annotations
17
- dtype: int32
18
- splits:
19
- - name: train
20
- num_bytes: 51838878.0
21
- num_examples: 125
22
- download_size: 51844870
23
- dataset_size: 51838878.0
24
- configs:
25
- - config_name: default
26
- data_files:
27
- - split: train
28
- path: data/train-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ tags:
4
+ - computer-vision
5
+ - image-segmentation
6
+ - leaf-disease
7
+ - in-the-wild
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
+
10
+ # Cleaned_100
11
+
12
+ This is a dataset of "in-the-wild" leaf images with segmentation masks generated by the **Segment Anything 2 (SAM 2)** model.
13
+
14
+ ## Dataset Description
15
+
16
+ This dataset contains multi-leaf, "in-the-wild" images of plants. The segmentation masks were automatically generated using the `SAM2AutomaticMaskGenerator` and then processed to create a final binary mask for each image, highlighting the most prominent leaf structures. This dataset is intended for training and evaluating robust, automatic leaf segmentation models.
17
+
18
+ ### Features
19
+ - `image`: The original RGB image.
20
+ - `mask`: The binary, single-channel (grayscale) segmentation mask generated by SAM 2.
21
+ - `image_id`: The original filename of the image.
22
+ - `width`: The original width of the image.
23
+ - `height`: The original height of the image.
24
+ - `num_annotations`: The number of distinct leaf regions found in the mask, calculated via contour detection.
25
+
26
+ ## Dataset Structure
27
+
28
+ The dataset consists of **125** image-mask pairs.