--- pretty_name: GenDS tags: - diffusion - image-restoration - computer-vision license: mit language: - en task_categories: - text-to-image size_categories: - 100K The **GenDS dataset** is a large dataset to boost the generalization of image restoration models. It is a combination of existing image restoration datasets and diffusion-generated degraded samples from **GenDeg**. --- ## Usage The dataset is fairly large at ~360GB. We recommend having at least 800GB of free space. To download the dataset, **git-lfs** is required. ### Download Instructions ```bash # Install git lfs git lfs install # Clone the dataset repository git clone https://huggingface.co/datasets/Sudarshan2002/GenDS.git cd GenDS # Pull the parts git lfs pull ``` ### Extract the Dataset: ```bash # Combine and extract cat GenDS_part_* > GenDS.tar.gz tar -xzvf GenDS.tar.gz ``` After extraction, rename ```GenDSFull``` to ```GenDS```. ## Dataset Structure The dataset includes: - `train_gends.json`: Metadata for the training data - `val_gends.json`: Metadata for the validation data Each JSON file contains a list of dictionaries with the following fields: ```json { "image_path": "/relpath/to/image", "target_path": "/relpath/to/ground_truth", "dataset": "Source dataset name", "degradation": "Original degradation type", "category": "real | synthetic", "degradation_sub_type": "GenDeg-generated degradation type OR 'Original' (if from existing dataset)", "split": "train | val", "mu": "mu value used in GenDeg", "sigma": "sigma value used in GenDeg", "random_sampled": true | false, "sampled_dataset": "Dataset name if mu/sigma are not random" } ``` ### Example Usage: ```python import json # Load train metadata with open("/path/to/train_gends.json") as f: train_data = json.load(f) print(train_data[0]) ``` ## Citation If you use **GenDS** in your work, please cite: ```bibtex @article{rajagopalan2024gendeg, title={GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration}, author={Rajagopalan, Sudarshan and Nair, Nithin Gopalakrishnan and Paranjape, Jay N and Patel, Vishal M}, journal={arXiv preprint arXiv:2411.17687}, year={2024} } ```