--- dataset_info: features: - name: video dtype: string - name: question dtype: string - name: options list: string - name: answer dtype: string - name: answer_text dtype: string - name: meta dtype: string - name: source dtype: string - name: qa_subtype dtype: string - name: qa_type dtype: string splits: - name: test num_bytes: 515277 num_examples: 1289 download_size: 174366 dataset_size: 515277 configs: - config_name: default data_files: - split: test path: data/test-* task_categories: - video-text-to-text --- # VideoEval-Pro VideoEval-Pro is a robust and realistic long video understanding benchmark containing open-ended, short-answer QA problems. The dataset is constructed by reformatting questions from four existing long video understanding MCQ benchmarks: Video-MME, MLVU, LVBench, and LongVideoBench into free-form questions. The paper can be found [here](https://huggingface.co/papers/2505.14640). The evaluation code and scripts are available at: [TIGER-AI-Lab/VideoEval-Pro](https://github.com/TIGER-AI-Lab/VideoEval-Pro) ## Dataset Structure Each example in the dataset contains: - `video`: Name (path) of the video file - `question`: The question about the video content - `options`: Original options from the source benchmark - `answer`: The correct MCQ answer - `answer_text`: The correct free-form answer - `meta`: Additional metadata from the source benchmark - `source`: Source benchmark - `qa_subtype`: Question task subtype - `qa_type`: Question task type ## Evaluation Steps 1. **Download and Prepare Videos** ```bash # Navigate to videos directory cd videos # Merge all split tar.gz files into a single archive cat videos_part_*.tar.gz > videos_merged.tar.gz # Extract the merged archive tar -xzf videos_merged.tar.gz # [Optional] Clean up the split files and merged archive rm videos_part_*.tar.gz videos_merged.tar.gz # After extraction, you will get a directory containing all videos # The path to this directory will be used as --video_root in evaluation # For example: 'VideoEval-Pro/videos' ``` 2. **[Optional] Pre-extract Frames** To improve efficiency, you can pre-extract frames from videos. The extracted frames should be organized as follows: ``` frames_root/ ├── video_name_1/ # Directory name is thevideo name │ ├── 000001.jpg # Frame images │ ├── 000002.jpg │ └── ... ├── video_name_2/ │ ├── 000001.jpg │ ├── 000002.jpg │ └── ... └── ... ``` After frame extraction, the path to the frames will be used as `--frames_root`. Set `--using_frames True` when running the evaluation script. 3. **Setup Evaluation Environment** ```bash # Clone the repository from the GitHub repository git clone https://github.com/TIGER-AI-Lab/VideoEval-Pro cd VideoEval-Pro # Create conda environment from requirements.txt (there are different requirements files for different models) conda create -n videoevalpro --file requirements.txt conda activate videoevalpro ``` 4. **Run Evaluation** ```bash cd VideoEval-Pro # Set PYTHONPATH export PYTHONPATH=. # Run evaluation script with the following parameters: # --video_root: Path to video files folder # --frames_root: Path to video frames folder [For using_frames] # --output_path: Path to save output results # --using_frames: Whether to use pre-extracted frames # --model_path: Path to model # --device: Device to run inference on # --num_frames: Number of frames to sample from video # --max_retries: Maximum number of retries for failed inference # --num_threads: Number of threads for parallel processing python tools/*_chat.py \ --video_root \ --frames_root \ --output_path \ --using_frames \ --model_path \ --device \ --num_frames \ --max_retries \ --num_threads E.g.: python tools/qwen_chat.py \ --video_root ./videos \ --frames_root ./frames \ --output_path ./results/qwen_results.jsonl \ --using_frames False \ --model_path Qwen/Qwen2-VL-7B-Instruct \ --device cuda \ --num_frames 32 \ --max_retries 10 \ --num_threads 1 ``` 5. **Judge the results** ```bash cd VideoEval-Pro # Set PYTHONPATH export PYTHONPATH=. # Run judge script *gpt4o_judge.py* with the following parameters: # --input_path: Path to save output results # --output_path: Path to judged results # --model_name: Version of the judge model # --num_threads: Number of threads for parallel processing python tools/gpt4o_judge.py \ --input_path \ --output_path \ --model_name \ --num_threads E.g.: python tools/gpt4o_judge.py \ --input_path ./results/qwen_results.jsonl \ --output_path ./results/qwen_results_judged.jsonl \ --model_name gpt-4o-2024-08-06 \ --num_threads 1 ``` **Note: the released results are judged by *gpt-4o-2024-08-06***